scholarly journals RAPD-based analysis of differences between male and female genotypes of Asparagus officinalis

2012 ◽  
Vol 39 (No. 1) ◽  
pp. 33-37 ◽  
Author(s):  
Y. Ii ◽  
A. Uragami ◽  
Y. Uno ◽  
M. Kanechi ◽  
N. Inagaki

Asparagus (Asparagus officinalis L.) plants are dioecious. All-male cultivars are desired because of their higher yields. To increase the proportion of male individuals planted in the field and expedite the breeding of all-male cultivars in asparagus, development of generally applicable molecular markers to distinguish male and female individuals is required. Bulked genomic DNA samples from ten male (XY) and ten female (XX) plants was screened with 10-bp random primers. Of the 188 primers tested, the primer T35R54 produced a 1600-bp fragment observed only in male individuals. The specificity of this T35R54-1600 marker was verified using DNA from one supermale (YY) and one female (XX) breeding line and their four F<sub>1</sub> progenies (XY). The T35R54-1600 marker fragment was observed in both supermale and all-male lines. The sequence of the T35R54 primer (5'-TTCACGGTGG-3') was absent among the sequences of primers or amplified fragments from previous studies. Therefore, this marker could be useful as a sex-related marker in future studies to increase the reliability of sex determination in asparagus.

Genome ◽  
1996 ◽  
Vol 39 (4) ◽  
pp. 818-821 ◽  
Author(s):  
G. Röder ◽  
K. E. Linsenmair ◽  
I. Nanda ◽  
M. Schmid

The karyotype of male and female Hemilepistus elongatus was investigated by means of C-banding. The diploid chromosome number in both sexes is 2n = 50. By scrutinizing general morphology and localization of the constitutive heterochromatin, no heteromorphic sex chromosomes were found. All chromosome pairs in males are well paired during diakinesis. Hybridization of genomic DNA with (GACA)4 and (GATA)4 oligonucleotides revealed no sex-specific patterns. Key words : karyotype, C-banding, sex determination, simple DNA-repeats, Isopoda.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 315
Author(s):  
Xu Yang ◽  
Kai Chen ◽  
Yaohui Wang ◽  
Dehong Yang ◽  
Yongping Huang

In insects, sex determination pathways involve three levels of master regulators: primary signals, which determine the sex; executors, which control sex-specific differentiation of tissues and organs; and transducers, which link the primary signals to the executors. The primary signals differ widely among insect species. In Diptera alone, several unrelated primary sex determiners have been identified. However, the doublesex (dsx) gene is highly conserved as the executor component across multiple insect orders. The transducer level shows an intermediate level of conservation. In many, but not all examined insects, a key transducer role is performed by transformer (tra), which controls sex-specific splicing of dsx. In Lepidoptera, studies of sex determination have focused on the lepidopteran model species Bombyx mori (the silkworm). In B. mori, the primary signal of sex determination cascade starts from Fem, a female-specific PIWI-interacting RNA, and its targeting gene Masc, which is apparently specific to and conserved among Lepidoptera. Tra has not been found in Lepidoptera. Instead, the B. mori PSI protein binds directly to dsx pre-mRNA and regulates its alternative splicing to produce male- and female-specific transcripts. Despite this basic understanding of the molecular mechanisms underlying sex determination, the links among the primary signals, transducers and executors remain largely unknown in Lepidoptera. In this review, we focus on the latest findings regarding the functions and working mechanisms of genes involved in feminization and masculinization in Lepidoptera and discuss directions for future research of sex determination in the silkworm.


Genetics ◽  
2003 ◽  
Vol 164 (4) ◽  
pp. 1345-1353
Author(s):  
Amber K Bowers ◽  
Jennifer A Keller ◽  
Susan K Dutcher

Abstract To take advantage of available expressed sequence tags and genomic sequence, we have developed 64 PCR-based molecular markers in Chlamydomonas reinhardtii that map to the 17 linkage groups. These markers will allow the rapid association of a candidate gene sequence with previously identified mutations. As proof of principle, we have identified the genes encoded by the ERY1 and ERY2 loci. Mendelian mutations that confer resistance to erythromycin define three unlinked nuclear loci in C. reinhardtii. Candidate genes ribosomal protein L4 (RPL4) and L22 (RPL22) are tightly linked to the ERY1 locus and ERY2 locus, respectively. Genomic DNA for RPL4 from wild type and five mutant ery1 alleles was amplified and sequenced and three different point mutations were found. Two different glycine residues (G102 and G112) are replaced by aspartic acid and both are in the unstructured region of RPL4 that lines the peptide exit tunnel of the chloroplast ribosome. The other two alleles change a splice site acceptor site. Genomic DNA for RPL22 from wild type and three mutant ery2 alleles was amplified and sequenced and revealed three different point mutations. Two alleles have premature stop codons and one allele changes a splice site acceptor site.


2018 ◽  
Author(s):  
Αλέξανδρος Τσακογιάννης

The differences between sexes and the concept of sex determination have always fascinated, yet troubled philosophers and scientists. Among the animals that reproduce sexually, teleost fishes show a very wide repertoire of reproductive modes. Except for the gonochoristic species, fish are the only vertebrates in which hermaphroditism appears naturally. Hermaphroditism refers to the capability of an organism to reproduce both as male and female in its life cycle and there are various forms of it. In sequential hermaphroditism, an individual begins as female first and then can change sex to become male (protogyny), or vice versa (protandry). The diverse sex-phenotypes of fish are regulated by a variety of sex determination mechanisms, along a continuum of environmental and heritable factors. The vast majority of sexually dimorphic traits result from the differential expression of genes that are present in both sexes. To date, studies regarding the sex-specific differences in gene expression have been conducted mainly in sex determination systems of model fish species that are well characterized at the genomic level, with distinguishable heteromorphic sex chromosomes, exhibiting genetic sex determination and gonochorism. Among teleosts, the Sparidae family is considered to be one of the most diversified families regarding its reproductive systems, and thus is a unique model for comparative studies to understand the molecular mechanisms underlying different sexual motifs. In this study, using RNA sequencing, we studied the transcriptome from gonads and brains of both sexes in five sparid species, representatives of four different reproductive styles. Specifically, we explored the sex-specific expression patterns of a gonochoristic species: the common dentex Dentex dentex, two protogynous hermaphrodites: the red porgy Pagrus pagrus and the common pandora Pagellus erythrinus, the rudimentary hermaphrodite sharpsnout seabream Diplodus puntazzo, and the protandrous gilthead seabream Sparus aurata. We found minor sex-related expression differences indicating a more homogeneous and sexually plastic brain, whereas there was a plethora of sex biased gene expression in the gonads. The functional divergence of the two gonadal types is reflected in their transcriptomic profiles, in terms of the number of genes differentially expressed, as well as the expression magnitude (i.e. fold-change differences). The observation of almost double the number of up-regulated genes in males compared to females indicates a male-biased expression tendency. Focusing on the pathways and genes implicated in sex determination/differentiation, we aimed to unveil the molecular pathways through which these non-model fish species develop a masculine or a feminine character. We observed the implicated pathways and major gene families (e.g. Wnt/b-catenin pathway and Retinoic-acid signaling pathway, Notch, TGFβ) behind sex-biased expression and the recruitment of known sex-related genes either to male or female type of gonads in these fish. (e.g Dmrt1, Sox9, Sox3, Cyp19a, Filgla, Ctnnb1, Gsdf9, Stra6 etc.). We also carefully investigated the presence of genes reported to be involved in sex determination/differentiation mechanisms in other vertebrates and fish and compared their expression patterns in the species under study. The expression profiling exposed known candidate molecular-players/genes establishing the common female (Cyp19a1, Sox3, Figla, Gdf9, Cyp26a, Ctnnb1, Dnmt1, Stra6) and male identity (Dmrt1, Sox9, Dnmt3aa, Rarb, Raraa, Hdac8, Tdrd7) of the gonad in these sparids. Additionally, we focused on those contributing to a species-specific manner either to female (Wnt4a, Dmrt2a, Foxl2 etc.) or to male (Amh, Dmrt3a, Cyp11b etc.) characters, and discussed the expression patterns of factors that belong to important pathways and/or gene families in the SD context, in our species gonadal transcriptomes. Taken together, most of the studied genes form part of the cascade of sex determination, differentiation, and reproduction across teleosts. In this study, we focused on genes that are active when sex is established (sex-maintainers), revealing the basic “gene-toolkit” & gene-networks underlying functional sex in these five sparids. Comparing related species with alternative reproductive styles, we saw different combinations of genes with conserved sex-linked roles and some “handy” molecular players, in a “partially- conserved” or “modulated” network formulating the male and female phenotype. The knowledge obtained in this study and tools developed during the process have set the groundwork for future experiments that can improve the sex control of this species and help the in-deep understanding the complex process of sex differentiation in the more flexible multi-component systems as these studied here.


2017 ◽  
Vol 93 (3) ◽  
pp. 264-271 ◽  
Author(s):  
Yingji Mao ◽  
Jinyan Hou ◽  
Xue Chen ◽  
Jun Ni ◽  
Weiwei Zhao ◽  
...  

1972 ◽  
Vol 14 (1) ◽  
pp. 175-180 ◽  
Author(s):  
D. N. Singh

A dioecious grass Sohnsia filifolia (Fourn.) Airy Shaw (Syn. Calamochloa filifolia Fourn.) from Mexico has been found to have 2n = 20 chromosomes in both male and female plants. The staminate plants have one chromosome much longer than the other chromosomes of the complement. One pistillate plant was found to have 30 chromosomes, among which the largest chromosome is quite similar to the largest component of the diploid male plant. The longest chromosome has been designated as the Y chromosome. An XY-mechanism of the Drosophilia type has been suggested for the sex determination system in this species. One small supernumerary chromosome was observed in the microsporocytes of some male plants, but was absent in roots.


2021 ◽  
pp. 1-13
Author(s):  
Francis Poulat

In vertebrates, gonadal sex determination is the process by which transcription factors drive the choice between the testicular and ovarian identity of undifferentiated somatic progenitors through activation of 2 different transcriptional programs. Studies in animal models suggest that sex determination always involves sex-specific transcription factors that activate or repress sex-specific genes. These transcription factors control their target genes by recognizing their regulatory elements in the non-coding genome and their binding motifs within their DNA sequence. In the last 20 years, the development of genomic approaches that allow identifying all the genomic targets of a transcription factor in eukaryotic cells gave the opportunity to globally understand the function of the nuclear proteins that control complex genetic programs. Here, the major transcription factors involved in male and female vertebrate sex determination and the genomic profiling data of mouse gonads that contributed to deciphering their transcriptional regulation role will be reviewed.


2021 ◽  
Vol 376 (1833) ◽  
pp. 20200102 ◽  
Author(s):  
Michail Rovatsos ◽  
Tony Gamble ◽  
Stuart V. Nielsen ◽  
Arthur Georges ◽  
Tariq Ezaz ◽  
...  

Differentiation of sex chromosomes is thought to have evolved with cessation of recombination and subsequent loss of genes from the degenerated partner (Y and W) of sex chromosomes, which in turn leads to imbalance of gene dosage between sexes. Based on work with traditional model species, theory suggests that unequal gene copy numbers lead to the evolution of mechanisms to counter this imbalance. Dosage compensation, or at least achieving dosage balance in expression of sex-linked genes between sexes, has largely been documented in lineages with male heterogamety (XX/XY sex determination), while ZZ/ZW systems are assumed to be usually associated with the lack of chromosome-wide gene dose regulatory mechanisms. Here, we document that although the pygopodid geckos evolved male heterogamety with a degenerated Y chromosome 32–72 Ma, one species in particular, Burton's legless lizard ( Lialis burtonis ), does not possess dosage balance in the expression of genes in its X-specific region. We summarize studies on gene dose regulatory mechanisms in animals and conclude that there is in them no significant dichotomy between male and female heterogamety. We speculate that gene dose regulatory mechanisms are likely to be related to the general mechanisms of sex determination instead of type of heterogamety. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)’.


1989 ◽  
Vol 44 (3-4) ◽  
pp. 226-232 ◽  
Author(s):  
Keiko Yanosaka ◽  
Hajime Iwamura ◽  
Toshio Fujita

Abstract A series of N-phenylcarbamates induced flowers in one-month-old seedlings of Asparagus officinalis L. Ninety to 100% of the plants flowered when the seeds were germinated in the presence of the most potent members of this class. The flowering occurred only once at the top of the seedlings, which then continued to grow normally. This made it possible to select the commer­cially preferred m ales of this dioecious plant at the seedling stage. Both male and female flowers were fertile, so cross-breeding was possible between flowering seedlings as well as between flowering seedlings and adults that had grown normally. Activity of flowering induction was not related with inhibition of photosystem II activity.


Author(s):  
Mary Jane West-Eberhard

Distinctive male and female traits are perhaps the most familiar of all divergent specializations within species. In cross-sexual transfer, discrete traits that are expressed exclusively in one sex in an ancestral species appear in the opposite sex of descendants. An example is the expression of brood care by males in a lineage where ancestral females are the exclusive caretakers of the young, as in some voles (Thomas and Birney, 1979). Despite the prominence of sexual dimorphism and sex reversals in nature, and an early explicit treatment by Darwin, discussed in the next section, cross-sexual transfer is not often recognized as a major factor in the evolution of novelty (but see, on animals, Mayr, 1963, pp. 435-439; Mayr, 1970, p. 254; on plants, Iltis, 1983). When more widely investigated, cross-sexual transfer may prove to rival heterochrony and duplication as an important source of novelties in sexually dimorphic lineages. For this reason, I devote more attention here to cross-sexual transfer than to these other, well-established general patterns of change. The male and female of a sexually dimorphic species may be so different that it is easy to forget that each individual carries most or all of the genes necessary to produce the phenotype of the opposite sex. Sex determination, like caste determination and other switches between alternative phenotypes, depends on only a few genetic loci or, in many species, environmental factors (Bull, 1983). There is considerable flexibility in sex determination and facultative reversal in some taxa. Among fish, for example, there is even a species wherein sex is determined by juvenile size at a critical age (Francis and Barlow, 1993). The sex determination mechanism, whatever its nature, leads to a series of sex-limited responses, often coordinated by hormones and not necessarily all occurring at once. A distinguishing aspect of sexually dimorphic traits in adults is that there is often a close homology between the secondary sexual traits that are differently modified in the two sexes.


Sign in / Sign up

Export Citation Format

Share Document