Assessment of the oxidative-antioxidant status and aerobic performance of elite skiers-racers in the dynamics of training cycle at moderate altitude

2019 ◽  
Vol 9 (4) ◽  
pp. 11-20
Author(s):  
Alexander A. Grushin ◽  
◽  
Irina E. Zelenkova ◽  
Elena N. Dudnik ◽  
Oleg S. Glazachev ◽  
...  
2005 ◽  
Vol 98 (1) ◽  
pp. 83-92 ◽  
Author(s):  
C. Reboul ◽  
S. Tanguy ◽  
J. M. Juan ◽  
M. Dauzat ◽  
P. Obert

This study questioned the effect of living and training at moderate altitude on cardiac morphological and functional adaptations and tested the incidences of potential specific adaptations compared with aerobic sea level training on maximal left ventricular performance. Sea level-native rats were randomly assigned to N (living in normoxia), NT (living and training 5 days/wk for 5 wk in normoxia), CH (living in hypoxia, 2,800 m), and CHT (living and training 5 days/wk for 5 wk in hypoxia, 2,800 m) groups. Cardiac adaptations were evaluated throughout the study period by Doppler echocardiography. Maximal stroke volume (LVSVmax) was measured during volume overloading before and after the study period. Finally, at the end of the study period, passive pressure-volume relationships on isolated heart and cardiac weighing were obtained. Altitude training resulted in a specific left ventricular (LV) remodeling compared with NT, characterized by an increase in wall thicknesses without any alteration in internal dimensions. These morphological adaptations associated with hypoxia-induced alterations in pulmonary outflow and preload conditions led to a decrease in LV filling and subsequently no improvement in LV performance during resting physiological conditions in CHT compared with NT. Such a lack of improvement was confirmed during volume overloading that simulated maximal effort (LVSVmax pretest: NT = 0.58 ± 0.05, CHT = 0.57 ± 0.08 ml; posttest: NT = 0.72 ± 0.06, CHT = 0.58 ± 0.07 ml; NT vs. CHT in posttest session, P < 0.05). Maximal aerobic velocities increased to the same extent in NT and CHT rats despite marked polycythemia in the latter. The lack of LVSVmax improvement resulting from altitude training-induced cardiac morphological and functional adaptations could be responsible for this phenomenon.


2011 ◽  
Vol 28 (1) ◽  
pp. 55-62 ◽  
Author(s):  
R Śliwowski ◽  
T Rychlewski T ◽  
M Laurentowska ◽  
E Michalak ◽  
M Andrzejewski ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 228
Author(s):  
Antoine Raberin ◽  
Elie Nader ◽  
Jorge Lopez Ayerbe ◽  
Gauthier Alfonsi ◽  
Patrick Mucci ◽  
...  

This study examined to what extent athletes exhibiting exercise-induced hypoxemia (EIH) possess an altered redox status at rest, in response to exercise at sea level (SL) and during moderate altitude exposure. EIH was defined as a fall in arterial O2 saturation of at least 4% during exercise. Nine endurance athletes with EIH and ten without (NEIH) performed a maximal incremental test under three conditions: SL, one (H1) and five (H2) days after arrival to 2400 m. Gas exchange and peripheral capillary oxygen saturation (SpO2) were continuously monitored. Blood was sampled before exercise and after exercise cessation. Advanced oxidation protein products (AOPP), catalase, ferric-reducing antioxidant power, glutathione peroxidase, superoxide dismutase (SOD) and nitric oxide metabolites (NOx) were measured in plasma by spectrophotometry. EIH athletes had higher AOPP and NOx concentrations at pre- and post-exercise stages compared to NEIH at SL, H2 but not at H1. Only the EIH group experienced increased SOD activity between pre- and post-exercise exercise at SL and H2 but not at H1. EIH athletes had exacerbated oxidative stress compared to the NEIH athletes at SL and H2. These differences were blunted at H1. Oxidative stress did not alter the EIH groups’ aerobic performance and could lead to higher minute ventilation at H2. These results suggest that higher oxidative stress response EIH athletes could be involved in improved aerobic muscle functionality and a greater ventilatory acclimatization during prolonged hypoxia.


1998 ◽  
Vol 5 (1) ◽  
pp. 143A-143A ◽  
Author(s):  
G DILDY ◽  
C LOUCKS ◽  
T PORTER ◽  
C SULLIVAN ◽  
M BELFORT ◽  
...  

Author(s):  
Hasan Haci Yeter ◽  
Berfu Korucu ◽  
Elif Burcu Bali ◽  
Ulver Derici

Abstract. Background: The pathophysiological basis of chronic kidney disease and its complications, including cardiovascular disease, are associated with chronic inflammation and oxidative stress. We investigated the effects of active vitamin D (calcitriol) and synthetic vitamin D analog (paricalcitol) on oxidative stress in hemodialysis patients. Methods: This cross-sectional study was composed of 83 patients with a minimum hemodialysis vintage of one year. Patients with a history of any infection, malignancy, and chronic inflammatory disease were excluded. Oxidative markers (total oxidant and antioxidant status) and inflammation markers (C-reactive protein and interleukin-6) were analyzed. Results: A total of 47% (39/83) patients were using active or analog vitamin D. Total antioxidant status was significantly higher in patients with using active or analog vitamin D than those who did not use (p = 0.006). Whereas, total oxidant status and oxidative stress index were significantly higher in patients with not using vitamin D when compared with the patients who were using vitamin D preparation (p = 0.005 and p = 0.004, respectively). On the other hand, total antioxidant status, total oxidant status, and oxidative stress index were similar between patients who used active vitamin D or vitamin D analog (p = 0.6; p = 0.4 and p = 0.7, respectively). Conclusion: The use of active or selective vitamin D analog in these patients decreases total oxidant status and increases total antioxidant status. Also, paricalcitol is as effective as calcitriol in decreasing total oxidant status and increasing total antioxidant status in patients with chronic kidney disease.


2017 ◽  
Vol 87 (3-4) ◽  
pp. 179-190
Author(s):  
Amel Kanane ◽  
Fayrouz Rouaki ◽  
Mohamed Brahim Errahmani ◽  
Abdenour Laraba ◽  
Hayet Mesbah ◽  
...  

Abstract. The aim of this study is to evaluate the effect of α-tocopherol supplementation at two doses (600 and 1200 mg × kg–1) on kidney antioxidant status and the histopathological changes in Wistar rats after 12 weeks of exposure at different diets. Forty rats has been divided into 4 groups of 10 rats each, the control group received basal diet with 5 % fresh sunflower oil (FSO), the second group: 5 % oxidized sunflower oil (OSO), the third group: 5 % OSO supplemented with 600 mg × kg–1 α-tocopherol and the fourth group: 5 % OSO supplemented with 1200 mg × kg–1 α-tocopherol. In OSO groups, the results showed highly significant increases of LPO (from 31.3 ± 0.9 to 53.8 ± 1.2 nmol of MDA formed/min/mg protein, p < 0.0001) with a significant decrease (p < = 0.001) of the antioxidant enzymatic activities (CAT, SOD, GPX, GR and G6PDH), body weight (339 ± 9 to 290 ± 3 g) and α-tocopherol levels (13.6 ± 0.6 to 6.5 ± 0.4 μg/mg protein). In OSO groups with 600 mg × kg–1 α-tocopherol, an antioxidant effect was found, reflected by a return of the parameters to values similar to those of the control group. However, higher doses of α-tocopherol (1200 mg × kg–1) induced a depletion of antioxidant status, α-tocopherol levels (6.0 ± 0.3 μg/mg protein, p < 0.001) and a very highly significant rise (p < 0.0001) of LPO content (54.86 ± 0.01 nmol of MDA formed/min/mg protein). The kidney tissues also showed changes in glomerular, severe inflammatory cells infiltration, and formation of novel vessels. So, we can conclude that the oxidative stress is attenuated by a moderate administration of 600 mg × kg–1 α-tocopherol, while a pro-oxidant effect occurs at 1200 mg × kg–1 α-tocopherol.


2011 ◽  
Vol 1 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Sandrina Ritzmann ◽  
Annette Kluge ◽  
Vera Hagemann ◽  
Margot Tanner

Recurrent training of cabin crew should include theoretical and practical instruction on safety as well as crew resource management (CRM) issues. The endeavors of Swiss International Air Lines Ltd. and Swiss Aviation Training Ltd. to integrate CRM and safety aspects into a single training module were evaluated. The objective of the integration was to make CRM more tangible and ease acquisition of competencies and transfer of CRM training content to practice by showing its relevance in relation to safety tasks. It was of interest whether the integrated design would be mirrored in a more favorable perception by the trainees as measured with a questionnaire. Participants reacted more positively to the integrated training than to stand-alone CRM training, although the integrated training was judged as being slightly more difficult and less oriented toward instructional design principles. In a range of forced-choice questions, the majority of participants opted for an integrated training format because it was seen as livelier and more interesting and also more practically relevant. For the forthcoming training cycle, a better alignment of training with instructional principles and an even higher degree of training integration by using simulator scenarios are striven for.


Sign in / Sign up

Export Citation Format

Share Document