scholarly journals The Multi-Walled Carbon Nanotubes Effect on the Physical-Mechanical Characteristics of Lightweight Concrete

Author(s):  
Rami J. Sldozian ◽  
◽  
Z.A. Mikhaleva ◽  
A.G. Tkachev ◽  
◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fahad Saleem Ahmed Khan ◽  
N. M. Mubarak ◽  
Mohammad Khalid ◽  
Rashmi Walvekar ◽  
E. C. Abdullah ◽  
...  

AbstractModified multi-walled carbon nanotubes (f-MWCNTs) and hydroxyapatite nanorods (n-HA) were reinforced into polypropylene (PP) with the support of a melt compounding approach. Varying composition of f-MWCNTs (0.1–0.3 wt.%) and nHA (15–20 wt.%) were reinforced into PP, to obtain biocomposites of different compositions. The morphology, thermal and mechanical characteristics of PP/n-HA/f-MWCNTs were observed. Tensile studies reflected that the addition of f-MWCNTs is advantageous in improving the tensile strength of PP/n-HA nanocomposites but decreases its Young’s modulus significantly. Based on the thermal study, the f-MWCNTs and n-HA were known to be adequate to enhance PP’s thermal and dimensional stability. Furthermore, MTT studies proved that PP/n-HA/f-MWCNTs are biocompatible. Consequently, f-MWCNTs and n-HA reinforced into PP may be a promising nanocomposite in orthopedics industry applications such as the human subchondral bone i.e. patella and cartilage and fabricating certain light-loaded implants.


Proceedings ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 17
Author(s):  
Suchorzewski ◽  
Prieto ◽  
Mueller ◽  
Malaga

Within EU project LightCoce (Building an Ecosystem for the upscaling of lightweight multi-functional concrete and ceramic materials and structures), RISE will be running a Pilot Line to allow the design and development of materials, elements of Cellular Lightweight Concrete (CLC) and/or lightweight composite elements with improved functionalities. One of these functionalities is self-sensing (damage and stress detection), achieved by reducing the natural concrete’s resistance with incorporation of the multi-walled carbon nanotubes (MWCNTs). By applying a small electric current in the outer electrodes attached to the concrete and measuring voltage on the inner electrodes the resistivity of the material can be easily calculated. The resistivity changes may indicate cracking and changing stress levels. In our study concrete was enhanced with various amounts of MWCNTs and tested in cyclic compression. The change of stress levels was clearly visible on the resistivity changes. After that, ultrahigh-performance concrete (UHPC) panels with two types of textile reinforcement (GFRP and CFRP) were tested in cyclic 4-point bending to investigate concretes sensitivity for multiple cracking. The resistivity measurement was able to capture multiple discrete cracks and the material degradation at micro-level due to fatigue.


Acta Naturae ◽  
2011 ◽  
Vol 3 (1) ◽  
pp. 99-106 ◽  
Author(s):  
E A Smirnova ◽  
A A Gusev ◽  
O N Zaitseva ◽  
E M Lazareva ◽  
G E Onishchenko ◽  
...  

2003 ◽  
Vol 772 ◽  
Author(s):  
T. Seeger ◽  
G. de la Fuente ◽  
W.K. Maser ◽  
A.M. Benito ◽  
A. Righi ◽  
...  

AbstractCarbon nanotubes (CNT) are interesting candidates for the reinforcement in robust composites and for conducting fillers in polymers due to their fascinating electronic and mechanical properties. For the first time, we report the incorporation of multi walled carbon nanotubes (MWNTs) into silica-glass surfaces by means of partial surface-melting caused by a continuous wave Nd:YAG laser. MWNTs were detected being well incorporated in the silica-surface. The composites are characterized using scanning electron microscopy (SEM) and Raman-spectroscopy. A model for the composite-formation is proposed based on heatabsorption by MWNTs and a partial melting of the silica-surface.


Sign in / Sign up

Export Citation Format

Share Document