scholarly journals Evaluating the performance of support vector machines based on different kernel methods for forecasting air pollutants

Author(s):  
Adven Masih ◽  
Alexander N. Medvedev

The alarming level of air pollution in urban centres is an urgent threat to human health. Its consequences can be measured in terms of health issues experienced by children, an increasing numbers of heart and lung diseases, and, most importantly, the number of pollution related deaths. That is why a lot of attention has recently been paid to air pollution monitoring and prediction modelling. In order to develop prediction models, the study uses Support Vector Machines (SVM) with linear, polynomial, radial base function, normalised polynomial, and Pearson VII function kernels to predict the hourly concentration of pollutants in the air. The paper analyses the monitoring dataset of air pollutants and meteorological parameters as input variable to predict the concentrations of various air pollutants. The prediction performance of the models was assessed by using evaluation metrics, namely the correlation coefficient, root mean squared error, relative absolute error, and relative root squared error. To validate the model, the accuracy of the predictive algorithm was tested against two widely and commonly applied regression approaches called multilayer perceptron and linear regression. Furthermore, back check prediction test was performed to examine the consistency of the models. According to the results, the Pearson VII function and normalised polynomial kernel yield the most accurate results in terms of the correlation coefficient and error values to predict the concentrations of atmospheric pollutants as compared to other SVM kernels and traditional prediction models.

Author(s):  
Hedieh Sajedi ◽  
Mehran Bahador

In this paper, a new approach for segmentation and recognition of Persian handwritten numbers is presented. This method utilizes the framing feature technique in combination with outer profile feature that we named this the adapted framing feature. In our proposed approach, segmentation of the numbers into digits has been carried out automatically. In the classification stage of the proposed method, Support Vector Machines (SVM) and k-Nearest Neighbors (k-NN) are used. Experimentations are conducted on the IFHCDB database consisting 17,740 numeral images and HODA database consisting 102,352 numeral images. In isolated digit level on IFHCDB, the recognition rate of 99.27%, is achieved by using SVM with polynomial kernel. Furthermore, in isolated digit level on HODA, the recognition rate of 99.07% is achieved by using SVM with polynomial kernel. The experiments illustrate that applying our proposed method resulted higher accuracy compared to previous researches.


2010 ◽  
Vol 39 ◽  
pp. 247-252
Author(s):  
Sheng Xu ◽  
Zhi Juan Wang ◽  
Hui Fang Zhao

A two-stage neural network architecture constructed by combining potential support vector machines (P-SVM) with genetic algorithm (GA) and gray correlation coefficient analysis (GCCA) is proposed for patent innovation factors evolution. The enterprises patent innovation is complex to conduct due to its nonlinearity of influenced factors. It is necessary to make a trade off among these factors when some of them conflict firstly. A novel way about nonlinear regression model with the potential support vector machines (P-SVM) is presented in this paper. In the model development, the genetic algorithm is employed to optimize P-SVM parameters selection. After the selected key factors by the PSVM with GA model, the main factors that affect patent innovation generation have been quantitatively studied using the method of gray correlation coefficient analysis. Using a set of real data in China, the results show that the methods developed in this paper can provide valuable information for patent innovation management and related municipal planning projects.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Hai Wei ◽  
Mingming Wang ◽  
Bingyue Song ◽  
Xin Wang ◽  
Danlei Chen

An effective approach is introduced to predict the magnitude of reservoir-triggered earthquake (RTE), based on support vector machines (SVM) and fuzzy support vector machines (FSVM) methods. The main influence factors on RTE, including lithology, rock mass integrity, fault features, tectonic stress state, and seismic activity background in reservoir area, are categorized into 11 parameters and quantified by using analytical hierarchy process (AHP). Dataset on 100 reservoirs in China, including the 48 well-documented cases of RTE, are collected and used to train and validate the prediction models established with SVM and FSVM, respectively. Through numerical tests, it is found that both the SVM and FSVM models are effective in the prediction of the magnitude of RTE with high accuracy, provided that sufficient samples are collected. While the results of FSVM which is extended from SVM by introducing a fuzzy membership to reduce the influence of noises or outliers are found to be slightly less accurate than those of SVM in the current analysis of RTE cases. The reason might be attributed to the high discreteness of the sample data in the current study.


2016 ◽  
Vol 59 ◽  
pp. 04003
Author(s):  
Nuraddeen Muhammad Babangida ◽  
Muhammad Raza Ul Mustafa ◽  
Khamaruzaman Wan Yusuf ◽  
Mohamed Hasnain Isa ◽  
Imran Baig

Author(s):  
KWANG IN KIM ◽  
JIN HYUNG KIM ◽  
KEECHUL JUNG

This paper presents a real-time face recognition system. For the system to be real time, no external time-consuming feature extraction method is used, rather the gray-level values of the raw pixels that make up the face pattern are fed directly to the recognizer. In order to absorb the resulting high dimensionality of the input space, support vector machines (SVMs), which are known to work well even in high-dimensional space, are used as the face recognizer. Furthermore, a modified form of polynomial kernel (local correlation kernel) is utilized to take account of prior knowledge about facial structures and is used as the alternative feature extractor. Since SVMs were originally developed for two-class classification, their basic scheme is extended for multiface recognition by adopting one-per-class decomposition. In order to make a final classification from several one-per-class SVM outputs, a neural network (NN) is used as the arbitrator. Experiments with ORL database show a recognition rate of 97.9% and speed of 0.22 seconds per face with 40 classes.


2011 ◽  
Vol 211-212 ◽  
pp. 1204-1209 ◽  
Author(s):  
Xuan Wu ◽  
Lin Mi ◽  
Wei Tan ◽  
Jia Lei Qin ◽  
Meng Na Zhao

This paper presents a new method to estimate the state of charge (SOC) of Ni-MH battery pack in hybrid electric vehicles (HEV). The proposed method establishes the relationship of the SOC to the battery’s voltage, current and temperature by using least square support vector machines (LS-SVM). According to the nonlinear characteristics of a battery pack system, the nonlinear SVM with polynomial kernel are developed for the estimation of the SOC with LS-SVM algorithm. To be more efficient in application, this method is also simplified in this paper. The results have conformed that the proposed method is able to estimate the SOC of Ni-MH battery with high accuracy and noise tolerating ability.


Sign in / Sign up

Export Citation Format

Share Document