scholarly journals ‘B-M MODEL’ FOR FARMERS’ KNOWLEDGE MANAGEMENT IN INCREASING RICE PRODUCTION

2021 ◽  
Vol 2 (1) ◽  
pp. 30-45
Author(s):  
BK Mahalder ◽  
◽  
MB Ahmed ◽  
H Bhandari ◽  
MU Salam ◽  
...  

Quantifying knowledge on agriculture can have many benefits to stakeholders. While many knowledge-based systems exist in modern days for farmers’ decision support, specific models are lacking on how knowledge traits can impact on agricultural production systems. This study employed modelling technique, supported by field data, to provide a clear understanding and quantifying how knowledge management in production practices can contribute to rice productivity in the environmentally stressed southwest Bangladesh. This research accounted for ‘Boro’ rice as the target crop and ‘BRRI dhan28’ as the test variety. The ‘B-M Model’ was developed following the principle and procedure from published literature, ‘brainstorming’ and data from field surveys. Three knowledge management traits (KMT) were defined and quantified as the inputs of the model. Those are: self-experience and observation (SEO), extension advisory services (EAS) and accessed information sources (AIS). The yield influencing process (YIP), the intermediate state variable of the model, was deduced by accounting for the two dominant agronomic practices, seedling age for transplanting and triple superphosphate (TSP) application. ‘Knowledge drives farmers’ practice change which in turn influences yield’ was composed as the theoretical framework of the ‘B-M Model’. The model performed strongly against an independently collected field data set. Across the 180 farmers’ data, the average relative rice yield (RRY) predicted by the model (0.705) and observed in the field (0.716) was close (root mean squared deviation (RMSD) = 0.018). The difference between predicted and observed RRY was not statistically different (LSD = 0.03), indicating the model fully captured the field data. A regression of predicted and observed RRY explained 96% variance in observation, further proving the model’s strength in estimating RRY in a wider range of farmers’ rice yield. In a normative analysis, the practicality and usefulness of the model to stakeholders were simulated for the understanding of how much achievable yield could be expected by changing farmers’ knowledge pool (the sum of three KMT) on rice production practices, and at what combination(s) of KMT to be considered at strategic hierarchy to materialize a targeted achievable yield. To the best of the knowledge, a model quantifying rice yield in relation to knowledge management trait does not exist in literature. Upon successful testing under diverse yield scenarios using multiple and sophisticated statistical tools that enhanced the credibility of the model, it is concluded that the model has the potential to be used for identifying quantitative pathways of farmers’ knowledge acquisition for practice change leading to improved productivity of rice in the southwest region of Bangladesh.

2019 ◽  
Vol 17 (1) ◽  
pp. 1-11
Author(s):  
MH Rashid ◽  
MKI Rony ◽  
D Mahalder ◽  
PC Goswami

Rice (Oryza sativa L.) production technology adoption requires effective farmers’ training for narrowing knowledge gap. This paper assesses the result of community training on the extent of adoption of improved rice production practices in low land rice of south western Bangladesh. A total of 531 farmers were trained through community training approach and 177 farmers were randomly selected for data collection. The extent of adoption of improved rice production practices and reasons for nonadopting technologies were solicited by personal interview with the help of a semi-structured questionnaire. Collected data were analysed using descriptive and inferential techniques. The community training was suited to adopt rice production technologies. The adoption of different rice production technologies was greater by the adopters of Satkhira district compared to Khulna that resulted in significant rice yield difference. The constraints against the adoption of the selected rice production technologies show that a portion of adopters was not convinced to adopt row transplanting, skipped row planting and birds perch for controlling insects, use of appropriate K and S fertilizers due to requirement of higher labour and fertilizer and risk of reduction of rice yield. The integration of other extension methods such as method and result demonstration might enhance the rate of adoption of those rice production technologies. SAARC J. Agri., 17(1): 1-11 (2019)


Author(s):  
Jun Wang ◽  
Xiaohong Meng ◽  
Fang Li

Abstract To further improve the accuracy of regional-residual separation of potential field data set, this paper presents a novel computation scheme based on different attenuation rate of the fields induced from deep and shallow sources respectively. For the new scheme, the observations are first upward continued to a plane above it to get an updated field. Then, the difference between the original field and the updated field is calculated. Next, a controlling parameter is set to select those data points whose amplitudes have been much reduced. The adverse effects from the residual anomalies on the fitting of the regional trend can be reduced by removing the identified local points from the original field. Finally, a low-order polynomial is utilised for approximating the regional trend, and the corresponding residual field can be obtained by simple subtraction. Compared with gradient-based methods, the proposed new scheme has better noise adaptability for distinguishing different anomalies. The accuracy of the presented scheme was tested on synthetic data with and without noise. All tests showed that the new scheme reduces subjectivity and inaccuracy of the conventional methods significantly. In addition, the scheme was applied to Bouguer gravity anomaly of the Dida orebodies in Jilin Province, northeast China. This application also verified the superiority of the proposed scheme.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. R447-R461 ◽  
Author(s):  
Lluís Guasch ◽  
Michael Warner ◽  
Céline Ravaut

Adaptive waveform inversion (AWI) reformulates the misfit function used to perform full-waveform inversion (FWI), so that it no longer contains local minima related to cycle skipping. It does this by finding a model that drives the ratio of the predicted and observed data sets to unity rather than driving the difference between these two data sets to zero as is the case for conventional FWI. We apply AWI to a 3D field data set acquired over a pervasive gas cloud in the North Sea, comparing its performance with that of conventional FWI in a variety of circumstances. When starting inversion from 3 Hz, and using a good starting model obtained from reflection tomography, FWI and AWI generate similar models although the FWI result contains edge artifacts that are not produced by AWI. However, when the starting frequency is increased to approximately 6 Hz, or when the starting model is less accurate, FWI fails to recover a good model whereas AWI continues to converge. When both of these conditions apply, FWI fails comprehensively, leading to a model that is significantly worse than the starting model, whereas the AWI result remains largely unaffected. We applied Kirchhoff depth migration to the fully-processed data using the FWI result obtained following reflection tomography, and using the AWI result obtained from a simple one-dimensional starting model. We use the resulting migrated volumes, together with measures of residual moveout throughout the volume, to show that the AWI result from a simple starting model is at least as good as the FWI result obtained following tomography. We conclude that AWI is robust in the presence of cycle skipping on this 3D field data set, and can proceed successfully from a less-accurate starting model, and from a higher starting frequency, in circumstances in which FWI fails completely.


2008 ◽  
Vol 37 (2) ◽  
pp. 623-630 ◽  
Author(s):  
Ana Cláudia Rodrigues de Lima ◽  
Willem Hoogmoed ◽  
Lijbert Brussaard

Author(s):  
Jules S. Jaffe ◽  
Robert M. Glaeser

Although difference Fourier techniques are standard in X-ray crystallography it has only been very recently that electron crystallographers have been able to take advantage of this method. We have combined a high resolution data set for frozen glucose embedded Purple Membrane (PM) with a data set collected from PM prepared in the frozen hydrated state in order to visualize any differences in structure due to the different methods of preparation. The increased contrast between protein-ice versus protein-glucose may prove to be an advantage of the frozen hydrated technique for visualizing those parts of bacteriorhodopsin that are embedded in glucose. In addition, surface groups of the protein may be disordered in glucose and ordered in the frozen state. The sensitivity of the difference Fourier technique to small changes in structure provides an ideal method for testing this hypothesis.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 777
Author(s):  
Erythrina Erythrina ◽  
Arif Anshori ◽  
Charles Y. Bora ◽  
Dina O. Dewi ◽  
Martina S. Lestari ◽  
...  

In this study, we aimed to improve rice farmers’ productivity and profitability in rainfed lowlands through appropriate crop and nutrient management by closing the rice yield gap during the dry season in the rainfed lowlands of Indonesia. The Integrated Crop Management package, involving recommended practices (RP) from the Indonesian Agency for Agricultural Research and Development (IAARD), were compared to the farmers’ current practices at ten farmer-participatory demonstration plots across ten provinces of Indonesia in 2019. The farmers’ practices (FP) usually involved using old varieties in their remaining land and following their existing fertilizer management methods. The results indicate that improved varieties and nutrient best management practices in rice production, along with water reservoir infrastructure and information access, contribute to increasing the productivity and profitability of rice farming. The mean rice yield increased significantly with RP compared with FP by 1.9 t ha–1 (ranges between 1.476 to 2.344 t ha–1), and net returns increased, after deducting the cost of fertilizers and machinery used for irrigation supplements, by USD 656 ha–1 (ranges between USD 266.1 to 867.9 ha–1) per crop cycle. This represents an exploitable yield gap of 37%. Disaggregated by the wet climate of western Indonesia and eastern Indonesia’s dry climate, the RP increased rice productivity by 1.8 and 2.0 t ha–1, with an additional net return gain per cycle of USD 600 and 712 ha–1, respectively. These results suggest that there is considerable potential to increase the rice production output from lowland rainfed rice systems by increasing cropping intensity and productivity. Here, we lay out the potential for site-specific variety and nutrient management with appropriate crop and supplemental irrigation as an ICM package, reducing the yield gap and increasing farmers’ yield and income during the dry season in Indonesia’s rainfed-prone areas.


Author(s):  
Xue Hu ◽  
Hongyi Liu ◽  
Chengyu Xu ◽  
Xiaomin Huang ◽  
Min Jiang ◽  
...  

Few studies have focused on the combined application of digestate and straw and its feasibility in rice production. Therefore, we conducted a two-year field experiment, including six treatments: without nutrients and straw (Control), digestate (D), digestate + fertilizer (DF), digestate + straw (DS), digestate + fertilizer + straw (DFS) and conventional fertilizer + straw (CS), to clarify the responses of rice growth and paddy soil nutrients to different straw and fertilizer combinations. Our results showed that digestate and straw combined application (i.e., treatment DFS) increased rice yield by 2.71 t ha−1 compared with the Control, and digestate combined with straw addition could distribute more nitrogen (N) to rice grains. Our results also showed that the straw decomposition rate at 0 cm depth under DS was 5% to 102% higher than that under CS. Activities of catalase, urease, sucrase and phosphatase at maturity under DS were all higher than that under both Control and CS. In addition, soil organic matter (SOM) and total nitrogen (TN) under DS and DFS were 20~26% and 11~12% higher than that under B and DF respectively, suggesting straw addition could benefit paddy soil quality. Moreover, coupling straw and digestate would contribute to decrease the N content in soil surface water. Overall, our results demonstrated that digestate and straw combined application could maintain rice production and have potential positive paddy environmental effects.


2016 ◽  
Vol 67 (3) ◽  
pp. 799-819 ◽  
Author(s):  
Rebecca Owusu Coffie ◽  
Michael P. Burton ◽  
Fiona L. Gibson ◽  
Atakelty Hailu

Sign in / Sign up

Export Citation Format

Share Document