Collection from Wastewater Treatment Plant, Transportation, and Storage of Raw Wastewater v1

Author(s):  
Kevin Calci ◽  
Kevin Calci

This method was developed at the FDA’s Center for Food Safety and Applied Nutrition for GenomeTrakr’s pandemic response project, monitoring SARS-CoV-2 variants in wastewater. Protocols developed for this project cover wastewater collection, concentration, RNA extraction, RT-qPCR detection, library prep, genome sequencing, quality control checks, and data submission to NCBI. This method describes the collection and transport of raw wastewater samples from a wastewater treatment plant.

2021 ◽  
Author(s):  
Padmini Ramachandran ◽  
Tamara Walsky ◽  
Amanda Windsor ◽  
maria.hoffmann not provided ◽  
Chris Grim

PURPOSE: This method was developed at the FDA’s Center for Food Safety and Applied Nutrition for GenomeTrakr’s pandemic response project, monitoring SARS-CoV-2 variants in wastewater. Protocols developed for this project cover wastewater collection, concentration, RNA extraction, RT-qPCR, library prep, genome sequencing, quality control checks, and data submission to NCBI. This modified protocol details methods for cDNA synthesis and library preparation for sequencing of wastewater samples containing SARS-CoV-2. The protocol is based primarily on the NEBNext® ARTIC SARS-CoV-2 Library Prep Kit (Illumina®), NEB #E7650S/L 24/96 reactions, with a few modifications. Primarily, VarSkip Short primers are used in place of the ARTIC V3 primers. These primers are available in the NEBNext®ARTIC SARS-CoV-2 FS Library Prep Kit (Illumina®); however, for optimal variant detection from wastewater, sequenced fragments should be as large as possible, so we discourage fragmentation prior to end prep. There are a couple of decision points in this protocol. Examining cDNA amplicon samples on an Agilent TapeStation system or similar fragment analyzer is extremely helpful in making these decisions.


1995 ◽  
Vol 31 (12) ◽  
pp. 171-183 ◽  
Author(s):  
M. M. Saqqar ◽  
M. B. Pescod

The performance of the primary anaerobic pond at the Alsamra Wastewater Treatment Plant in Jordan was monitored over 48 months. Overall averages for the removal efficiencies of BOD5, COD and suspended solids were 53%, 53% and 74%, respectively. An improvement in removal efficiency with increase in pond water temperature was demonstrated. A model, which takes into account the variability of raw wastewater at different locations, has been developed to describe the performance of a primary anaerobic pond in terms of a settleability ratio for the raw wastewater. The model has been verified by illustrating the high correlation between actual and predicted pond performance.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1339
Author(s):  
Javier Bayo ◽  
Sonia Olmos ◽  
Joaquín López-Castellanos

This study investigates the removal of microplastics from wastewater in an urban wastewater treatment plant located in Southeast Spain, including an oxidation ditch, rapid sand filtration, and ultraviolet disinfection. A total of 146.73 L of wastewater samples from influent and effluent were processed, following a density separation methodology, visual classification under a stereomicroscope, and FTIR analysis for polymer identification. Microplastics proved to be 72.41% of total microparticles collected, with a global removal rate of 64.26% after the tertiary treatment and within the average retention for European WWTPs. Three different shapes were identified: i.e., microfiber (79.65%), film (11.26%), and fragment (9.09%), without the identification of microbeads despite the proximity to a plastic compounding factory. Fibers were less efficiently removed (56.16%) than particulate microplastics (90.03%), suggesting that tertiary treatments clearly discriminate between forms, and reporting a daily emission of 1.6 × 107 microplastics to the environment. Year variability in microplastic burden was cushioned at the effluent, reporting a stable performance of the sewage plant. Eight different polymer families were identified, LDPE film being the most abundant form, with 10 different colors and sizes mainly between 1–2 mm. Future efforts should be dedicated to source control, plastic waste management, improvement of legislation, and specific microplastic-targeted treatment units, especially for microfiber removal.


2012 ◽  
Vol 11 ◽  
pp. 25-28
Author(s):  
Arshad Ali ◽  
Muhammad Jawed Iqbal

The decline in the availability and alarming pollution of the existing water resources is the major environmental problem of third-world countries. The main reason of water pollution is the disposal of untreated industrial effl uents. This study was designed to evaluate the pollution load caused by a paper mill, and to propose a wastewater treatment plant design, based on the analyses of wastewater samples. The wastewater samples were collected from the local paper mill for a period of more than four months on a regular basis. The pH, temperature, color, TSS, TDS, BOD, COD and AOX were measured as, 8.1, 23°C, 2,431 PtCo unit, 956 mg/L, 3,046 mg/L, 1,582 mg/L, 2,492 mg/L and 19.81 mg/L, respectively. Based on the data obtained, the wastewater treatment plant consisting of a screening chamber, primary sedimentation tank and a UASB reactor was designed. It was concluded that the treatment effi ciency of more than 75% removal of BOD and COD concentrations could be accomplished. The treatment plant will also be able to produce 2,200 m3/day of biogas.DOI: http://dx.doi.org/10.3126/hn.v11i0.7157 Hydro Nepal Vol.11 2011 pp.25-28


2021 ◽  
Author(s):  
Jacquelina.Woods not provided

This method was developed at the FDA’s Center for Food Safety and Applied Nutrition for GenomeTrakr’s pandemic response project, monitoring SARS-CoV-2 variants in wastewater​​. Protocols developed for this project cover wastewater collection, concentration, RNA extraction, RT-qPCR detection, library prep, genome sequencing, quality control checks, and data submission to NCBI. This method provides a reagent formula required in the extraction of RNA from viral concentrates using the RNeasy and Zymo kits.


2004 ◽  
Vol 50 (7) ◽  
pp. 139-146 ◽  
Author(s):  
L. Novák ◽  
D. Havrlíková

Prague wastewater treatment plant was intensified during 1994-1997 by construction of new regeneration tank and four new secondary settling tanks. Nevertheless, more stringent effluent limits and operational problems gave rise to necessity for further intensification and optimisation of plant performance. This paper describes principal operational problems of the plant and shows solutions and achieved results that have lead to plant performance stabilisation. The following items are discussed: low nitrification capacity, nitrification bioaugmentation, activated sludge bulking, insufficient sludge disposal capacity, chemical precipitation of raw wastewater, simultaneous precipitation, sludge chlorination, installation of denitrification zones, sludge rising in secondary settling tanks due to denitrification, dosage of cationic polymeric organic flocculant to secondary settling tanks, thermophilic operation of digestors, surplus activated sludge pre-thickening, mathematical modelling.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Kefa K. Onchoke ◽  
Salomey A. Sasu

The concentration of hexavalent chromium (Cr(VI)), a toxic environmental pollutant and carcinogen, was determined in samples collected from Nacogdoches Wastewater Treatment Plant (NWWTP) using ion chromatography and UV-visible spectrophotometry (IC, UV-Vis). On reaction with 1,5-diphenylcarbazide (DPC) Cr+6 forms a 1,5-diphenylcarbazide-Cr(VI) complex, which is then analyzed at 530 nm and 540 nm, respectively. Via ion chromatography Cr(VI) concentrations were in the range of 0.00190±0.0020 and 0.0010±0.0006 ppm at the influent and effluent, respectively. With the use of standard addition wastewater samples were spiked with a 0.5 ppm Cr(VI) standard of various amounts and subsequently analyzed with UV-Vis spectrophotometry. The spiked concentrations gave Cr(VI) concentrations in the range of 0.0090±0.0060 ppm and 0.0040±0.0061 ppm at the influent and influent wastewater, respectively. The determined Cr(VI) concentrations through the ion chromatography and UV-Vis spectrophotometry are below the maximum USEPA contaminant concentration of 0.1 ppm. From the analysis, the NWWTP efficiently removes Cr(VI) before discharge into the environment through La Nana Creek. The removal efficiency for Cr(VI) was determined to be ≥92.8% along the wastewater treatment stages from the influent (aeration stage) to the effluent stages prior to discharge into the La Nana Creek.


Intervirology ◽  
2021 ◽  
pp. 1-6
Author(s):  
Ousmane Kebe ◽  
Maria-Dolores Fernandez-Garcia ◽  
Amary Fall ◽  
Hamet Dia ◽  
Maxime Bidalot ◽  
...  

<i>Aichi virus 1</i> (AiV-1) has been proposed as a causative agent of human gastroenteritis. In this study, raw, decanted, and treated wastewater samples from a wastewater treatment plant in an urban area of Dakar, Senegal, were collected. AiV-1 was detected in raw (70%, 14/20), decanted (68.4%, 13/19), and treated (59.3%, 16/27) samples, revealing a noticeable resistance of AiV-1 to chlorine-based treatment. Phylogenetic analysis revealed that all sequences clustered within genotype B. Our study presents the first report on the detection of AiV-1 in the environment of Dakar and constitutes indirect evidence of virus circulation in the population.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1342
Author(s):  
I-Tae Kim ◽  
Kwang-Ho Ahn ◽  
Ye-Eun Lee ◽  
Yoonah Jeong ◽  
Jae-Roh Park ◽  
...  

This study used biogas from a wastewater treatment plant and bacterial community where methanotrophs, Methylophilus, and ammonia-oxidizing bacteria clusters coexisted to propose an effective method for biological carbon fixation and nitrogen removal in wastewater treatment for carbon capture, utilization, and storage (CCUS). Biogas from wastewater treatment plant was provided, instead of purified CH4, to provide operation and maintenance conditions of bio-catalyst reaction for efficient biological carbon fixation by bacterial community using methane and CO2. This study assessed the conditions to induce type X methanotrophs that can use CO2 as a carbon source, as dominant species in the bacterial community and continuously and effectively supply reducing equivalents required for the conversion of CO2 to methanol within the system. Herein, the results of inducing efficient co-existence of methanotrophs, Methylophilus, and ammonia-oxidizing bacteria cluster in the bacterial community were shown.


Sign in / Sign up

Export Citation Format

Share Document