Cell line construction and maintenance for Lyso-IP and Endo-IP analysis of amyloid precursor protein processing v1

Author(s):  
Hankum Park ◽  
Frances V Hundley ◽  
Harper JW

Lyso-IP is a method that allows for the isolation of lysosomes for proteomics and metabolomics (dx.doi.org/10.17504/protocols.io.bybjpskn; dx.doi.org/10.17504/protocols.io.bx9hpr36). We have developed an analogous approach for purification of early/sorting endosomes (Endo-IP). In addition, we have found that endolysosomal purification via Lyso-IP and Endo-IP can be coupled with a quantitative proteomics workflow to obtain snapshots of Amyloid Precursor Protein (APP) processing to its Aβ products (Park et al. in submission). Here, we describe methods for cell line construction and maintenance of 293 cells with TMEM192-3xHA and 3xFLAG-EEA1, which are used for lysosome and endosome purification, respectively, with the addition of patient mutations to APP promotes processing. Cells with endogenously tagged TMEM192 and stably expressing FLAG-EEA1 are referred to as 293EL cells, for Endo-IP and Lyso-IP. These cells were also prepared in a form that has a deletion of the APP gene (293EL;APP-/-) and the same cells reconstituted with a lentivirus stably expressing APPSw;T700N to allow functional analysis of APP processing.

2015 ◽  
Vol 470 (3) ◽  
pp. 303-317 ◽  
Author(s):  
Wan Ning Vanessa Chow ◽  
Jacky Chi Ki Ngo ◽  
Wen Li ◽  
Yu Wai Chen ◽  
Ka Ming Vincent Tam ◽  
...  

Phosphorylation of FE65 Ser610 by serum- and glucocorticoid-induced kinase 1 (SGK1) attenuates amyloid precursor protein (APP) processing via regulation of FE65–APP interaction.


2017 ◽  
Vol 292 (9) ◽  
pp. 3751-3767 ◽  
Author(s):  
Hermeto Gerber ◽  
Fang Wu ◽  
Mitko Dimitrov ◽  
Guillermo M. Garcia Osuna ◽  
Patrick C. Fraering

2017 ◽  
Vol 313 (5) ◽  
pp. R585-R593 ◽  
Author(s):  
Rebecca E. K. MacPherson

Inactivity, obesity, and insulin resistance are significant risk factors for the development of Alzheimer’s disease (AD). Several studies have demonstrated that diet-induced obesity, inactivity, and insulin resistance exacerbate the neuropathological hallmarks of AD. The aggregation of β-amyloid peptides is one of these hallmarks. β-Site amyloid precursor protein-cleaving enzyme 1 (BACE1) is the rate-limiting enzyme in amyloid precursor protein (APP) processing, leading to β-amyloid peptide formation. Understanding how BACE1 content and activity are regulated is essential for establishing therapies aimed at reducing and/or slowing the progression of AD. Exercise training has been proven to reduce the risk of AD as well as decrease β-amyloid production and BACE1 content and/or activity. However, these long-term interventions also result in improvements in adiposity, circulating metabolites, glucose tolerance, and insulin sensitivity making it difficult to determine the direct effects of exercise on brain APP processing. This review highlights this large void in our knowledge and discusses our current understanding of the direct of effect of exercise on β-amyloid production. We have concentrated on the central role that brain-derived neurotrophic factor (BDNF) may play in mediating the direct effects of exercise on reducing brain BACE1 content and activity as well as β-amyloid production. Future studies should aim to generate a greater understanding of how obesity and exercise can directly alter APP processing and AD-related pathologies. This knowledge could provide evidence-based hypotheses for designing therapies to reduce the risk of AD and dementia.


Sign in / Sign up

Export Citation Format

Share Document