scholarly journals Investigation into the thermal protection of building enclosing structures in the case of emergency heat supply

2021 ◽  
Vol 10 (1/2021) ◽  
pp. 87-96
Author(s):  
Tatyana Rafalskaya ◽  
Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6024
Author(s):  
Alexey Korzhakov ◽  
Sergei Oskin

This article presents the results of the design of acoustic–magnetic device thermal protection technology based on simulation. The acoustic–magnetic device (AMD) was installed in the heat supply system of a greenhouse complex with a geothermal heat source, developed and patented by the authors of this paper. Simulation was performed to investigate the possibility of maintaining the acoustic transmitter temperature of the acoustic–magnetic device in its operating range. The QuickField Student Edition v 6.4 simulation environment was used for this purpose. Based on the results of the simulation, the optimum thermal mode of the acoustic–magnetic device was developed and implemented. The optimum temporal operating mode of the acoustic–magnetic device is necessary for the optimization of the non-reagent treatment of geothermal water in a heat supply system of a greenhouse complex. It allows for a considerable reduction in the intensity of scale formation in the heat exchanger and equipment of a geothermal heating system. As demonstrated by the simulation thermal modes, the acoustic–magnetic device provides conditions for the work maintenance of the AMD acoustic transmitter at the resonance frequency, reduces the power expenses, and increases the efficiency of the acoustic influence on the scale formed in the heat supply system of a greenhouse complex. The results of the simulation were implemented in the greenhouse complex of JSC “Raduga.” The thermal protection technology was realized by installing two acoustic–magnetic devices and automation systems in the geothermal heating system a greenhouse complex.


Author(s):  
Alexander N. Gershuni ◽  
Alexander P. Nishchik ◽  
Evgeviy N. Pis’mennyi ◽  
Victor G. Razumovskiy ◽  
Igor L. Pioro

Object of the study relates to passive safety systems of cooling, heat removal and thermal protection that operate as independent evaporation-condensation (EC) systems and could maintain required thermal conditions of the technological systems of nuclear power cycle. Reliability of the passive systems is provided by absence of moving parts and by their operation based on physical laws of nature, i.e., without any intervention of staff, power supply, and control signals. One of the main features of these systems is their ultimate heat transferring ability. There are hydrodynamic limitations of heat transferring ability connected with provision of coolant circulation in vapor-condensate lines of transportation zone that could be combined into two groups: 1) the crises depending upon quantity and distribution of liquid phase; and 2) the crises affected by hydrodynamic interaction of liquid and vapor phases. The authors undertook investigation of various thermophysical factors limiting this ability, determined and analyzed its regularities, which depend upon thermodynamical conditions, transport ability of capillary structures (if any), and the interaction of vapor and liquid flows of HP coolant. Heat transferring ability of a model of EC system of passive surface cooling and thermal shielding under the conditions of heat supply from radiating surface of reactor simulator to heat pipes as the elements of two-row screen was investigated. The analysis and calculations made by the authors proved the possibility to create an efficient passive evaporation EC system of surface cooling and thermal shielding of reactor unit. Such a system has a number of advantages as compared with known active safety systems (e.g., autonomy, higher reliability, and operational safety), does not require emergency water resources, compressed air systems, numerous valves, etc.). The tests were performed at vertical orientation of HP evaporation zone (condensation zone was above evaporation zone) as a part of the double-row screen. The heat pipe was tested at its location in each of two rows and at two options of condensation zone: vertical and inclined in transportation zone at 20° to horizon. It was found that only insignificant circumferential nonisothermality of heat-pipe surface under steady one-side heat supply in evaporation zone took place. Quite satisfactory agreement of the experimental and predicted values of heat flux transmitted by heat pipes of two-row screen was obtained. The investigation proved efficiency and reliability of EC system of surface cooling and thermal shielding of the reactor equipment.


2019 ◽  
Author(s):  
Steven Kim ◽  
Alexa Devega ◽  
Mallory Sico ◽  
Hao Wu ◽  
William Fahy ◽  
...  

2016 ◽  
Vol 2016 (1) ◽  
pp. 24-33 ◽  
Author(s):  
V.D. Bilodid ◽  
Keyword(s):  

Author(s):  
S. I. Nefedkin ◽  
A. O. Barsukov ◽  
M. I. Mozgova ◽  
M. S. Shichkov ◽  
M. A. Klimova

The paper proposes an alternative scheme of guaranteed electricity and heat supply of an energy-insulated facility with a high potential of wind energy without the use of imported or local fuel. The scheme represents a wind power complex containing the park of wind generators located at the points with high wind potential. The wind generators provide guaranteed power supply even in periods of weak wind. For heat supply of the consumer, all surplus of the electric power goes on thermoelectric heating of water in tanks of accumulators, and also on receiving hydrogen by a method of electrolysis of water. The current heat supply is carried out with the use of hot water storage tanks, and the heat supply during the heat shortage is carried out by burning the stored hydrogen in condensing hydrogen boilers. We have developed the algorithm of calculation and the program "Wind in energy" which allows calculating annual balance of energy and picking up necessary quantity of the equipment for implementation of the scheme proceeding from the annual schedule of thermal and electric loading, and also potential of wind energy in the chosen region. The calculation-substantiation of the scheme proposed in relation to the real energy-insulated object Ust-Kamchatsk (Kamchatka) is carried out. The equipment for the implementation of an alternative energy supply scheme without the use of imported fuel is selected and compared with the traditional energy supply scheme based on a diesel power plant and a boiler house operating on imported fuel. With the introduction of an alternative power supply scheme, the equipment of the traditional scheme that has exhausted its resource can be used for backup power supply. Using climate databases, a number of energy-insulated facilities in the North and East of Russia with high wind energy potential are considered and the conditions for the successful implementation of the energy supply scheme are analyzed. This requires not only a high average annual wind speed, but also a minimum number of days of weak wind. In addition, it is necessary that the profile of the wind speed distribution in the annual section coincides with the profile of the heat load consumption.


Sign in / Sign up

Export Citation Format

Share Document