scholarly journals Yield Enhancement of Recombinant α-Amylases in Bacillus amyloliquefaciens by ARTP Mutagenesis-Screening and Medium Optimization

2019 ◽  
Vol 48 (5) ◽  
pp. 965-974 ◽  
Author(s):  
Ting-liang Xu ◽  
Jing Peng Jing Peng ◽  
Yu-ling Zhu ◽  
Su Li Su Li ◽  
Kai-yan Zhou ◽  
...  
LWT ◽  
2021 ◽  
pp. 111812
Author(s):  
Yu Lu ◽  
Xiangjin Cheng ◽  
Huanhuan Deng ◽  
Shouwen Chen ◽  
Zhixia Ji

Biotecnia ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 127-132
Author(s):  
R. Prabhaharan ◽  
J. Borboa-Flores ◽  
E. C. Rosas-Burgos ◽  
J. L. Cárdenas-López ◽  
J. Ortega-García ◽  
...  

Salinity-tolerant plants offer hope for the future of agriculture by providing solutions to the problems caused by years. Sonora is the most arid Mexican state. The agroindustrial halophytes are an option in dry-arid zones agriculture. In the present study, we evaluated the growth and development under different salinity and field conditions, of two beans (Phaseolus acutifolius) genotypes: Indio Yumi, and Navojoa. Seeds were inoculated with plant growth promoting halobacteria, a previously selected and cultivated strain of Azospirillum halopraeferens and a native Bacillus amyloliquefaciens. Significant differences were observed among them for weight and biomass, as well as biochemical features between the analyzed plant parts. Our findings suggest that a potential yield enhancement and protein production under field conditions can be promoted by the application of the beneficial bacterium B. amyloliquefaciens and A. halopraeferens. Also, demonstrated the ability of the studied beneficial halobacteria to promote growth and yield of the halotolerant Phaseolus acutifolius, a potentially useful finding for the agricultural growers in dry and semiarid zones.


2020 ◽  
Vol 90 ◽  
pp. 50-57
Author(s):  
Yuxiang Xu ◽  
Dongbo Cai ◽  
Hong Zhang ◽  
Lin Gao ◽  
Yong Yang ◽  
...  

Author(s):  
Nguyễn Thị Bích Đào ◽  
Trần Quang Khánh Vân ◽  
Nguyễn Văn Khanh ◽  
Nguyễn Quang Linh

Khi tình hình bệnh hội chứng tôm chết sớm (EMS) đã gây thiệt hại vô cùng to lớn đối với Nuôi trồng thủy sản thì các giải pháp được đề nghị và áp dụng nhằm hạn chế dịch bệnh. Trong đó, việc tìm hiểu và đưa vi khuẩn có lợi để cạnh tranh và ức chế loài vi khuẩn gây bệnh rất được quan tâm, được cho là giải pháp có nhiều triển vọng phù hợp với điều kiện môi trường, đảm bảo sức khỏe cho con người, cũng như hạn chế được dịch bệnh. Đặc biệt, đưa vi khuẩn Bacillus spp. qua đường tiêu hóa của tôm ngay từ khi mới thả đã hạn chế được mật độ vi khuẩn Vibrio. Nghiên cứu này đã phân lập được các chủng Bacillus subtilis B1, Bacillus subtilis B2, Bacillus amyloliquefaciens B4và thử khả năng đối kháng với vi khuẩn Vibrio parahaemolyticus V1 ở các nồng độ 103, 104, 105, 106 CFU theo dõi ở các thời điểm 6h, 12h, 24h, 48h và 72h. Kết quả cho thấy cả ba chủng vi khuẩn Bacillus trên phân lập được đều có khả năng ức chế tốt vi khuẩn Vibrio parahaemolyticus V1, trong đó vi khuẩn Bacillus amyloliquefaciens B4 làtốt nhất với đường kính vòng kháng khuẩn 52,67 ± 4,31mm ở thời điểm 48h; hai chủng Bacillus subtilis B1, Bacillus subtilis B2 lầnlượt là  49,67 ± 3,15 mm, 44,07 ± 5,19 mm, với mức sai số có ý nghĩa thống kê p < 0,05.


Author(s):  
D.S. Patrick ◽  
L.C. Wagner ◽  
P.T. Nguyen

Abstract Failure isolation and debug of CMOS integrated circuits over the past several years has become increasingly difficult to perform on standard failure analysis functional testers. Due to the increase in pin counts, clock speeds, increased complexity and the large number of power supply pins on current ICS, smaller and less equipped testers are often unable to test these newer devices. To reduce the time of analysis and improve the failure isolation capabilities for failing ICS, failure isolation is now performed using the same production testers used in product development, multiprobe and final test. With these production testers, the test hardware, program and pattern sets are already available and ready for use. By using a special interface that docks the production test head to failure isolation equipment such as the emission microscope, liquid crystal station and E-Beam prober, the analyst can quickly and easily isolate the faillure on an IC. This also enables engineers in design, product engineering and the waferfab yield enhancement groups to utilize this equipment to quickly solve critical design and yield issues. Significant cycle time savings have been achieved with the migration to this method of electrical stimulation for failure isolation.


Author(s):  
M.L. Anderson ◽  
P. Tangyunyong ◽  
T.A. Hill ◽  
C.Y. Nakakura ◽  
T.J. Headley ◽  
...  

Abstract By combining transmission electron microscopy (TEM) [1] with scanning capacitance microscopy (SCM) [2], it is possible to enhance our understanding of device failures. At Sandia, these complementary techniques have been utilized for failure analysis in new product development, process validation, and yield enhancement, providing unique information that cannot be obtained with other analytical tools. We have previously used these instruments to identify the root causes of several yield-limiting defects in CMOS device product lines [3]. In this paper, we describe in detail the use of these techniques to identify electrically active silicon dislocations in failed SRAMs and to study the underlying leakage mechanisms associated with these defects.


Author(s):  
Sarven Ipek ◽  
David Grosjean

Abstract The application of an individual failure analysis technique rarely provides the failure mechanism. More typically, the results of numerous techniques need to be combined and considered to locate and verify the correct failure mechanism. This paper describes a particular case in which different microscopy techniques (photon emission, laser signal injection, and current imaging) gave clues to the problem, which then needed to be combined with manual probing and a thorough understanding of the circuit to locate the defect. By combining probing of that circuit block with the mapping and emission results, the authors were able to understand the photon emission spots and the laser signal injection microscopy (LSIM) signatures to be effects of the defect. It also helped them narrow down the search for the defect so that LSIM on a small part of the circuit could lead to the actual defect.


Author(s):  
Srikanth Perungulam ◽  
Scott Wills ◽  
Greg Mekras

Abstract This paper illustrates a yield enhancement effort on a Digital Signal Processor (DSP) where random columns in the Static Random Access Memory (SRAM) were found to be failing. In this SRAM circuit, sense amps are designed with a two-stage separation and latch sequence. In the failing devices the bit line and bit_bar line were not separated far enough in voltage before latching got triggered. The design team determined that the sense amp was being turned on too quickly. The final conclusion was that a marginal sense amp design, combined with process deviations, would result in this type of failure. The possible process issues were narrowed to variations of via resistances on the bit and bit_bar lines. Scanning Electron Microscope (SEM) inspection of the the Focused Ion Beam (FIB) cross sections followed by Transmission Electron Microscopy (TEM) showed the presence of contaminants at the bottom of the vias causing resistance variations.


Sign in / Sign up

Export Citation Format

Share Document