scholarly journals Electrochemical Reaction and Dissociation of Glycerol on PdAu Surface Catalyst

2020 ◽  
Vol 49 (12) ◽  
pp. 3091-3100
Author(s):  
Nabila A. Karim ◽  
Norilhamiah Yahya ◽  
Muhammad Syafiq ◽  
Siti Kartom Kamarudin

Direct Glycerol Fuel Cell is one of the alternative energy that can produce electricity without burning. The production of electricity without combustion can reduce the use of fossil fuel as well as reduce environmental pollution. A new catalyst of PdAu has been synthesized in this study to increase the activity of the glycerol oxidation reaction. Morphologies analysis was performed on CNF-supported synthesized PdAu. FESEM and TEM image show the PdAu supported on the CNF surface. Both PdAu and CNF has a diameter size of 4-6 nm and 80-130 nm, respectively. In CV analysis, PdAu/CNF has produced an oxidation peak and current density at -0.9 V vs. SCE and 70 mA/cm2, respectively. Each mechanism of glycerol dissociation step during glycerol oxidation, different atomic active sites are required in PdAu. For example, for glycerol adsorption, Au atom as an active site while for *C3H7O3 requires Pd atom and Au atom as the active site. The Au catalyst model shows better adsorption as Au/CNF has a slightly more negative oxidation peak than PdAu. Nevertheless, the Au catalyst showed less durability compared to PdAu.

2014 ◽  
Vol 10 (1) ◽  
pp. 35-51
Author(s):  
I. Czupy

Concerns about climate change and fossil fuel shortages are encouraging interest in stumps, as alternative energy sources. Stumps are an almost unused resource in the context of bio fuels. Stump harvesting signifies an intensification of forest management compared with conventional stem-only or above-ground biomass-only harvesting. There are many benefits of stump harvesting. These include: the production of wood fuel, fossil fuel substitution, and improved soil preparation.Removing tree trunks in Hungary has been going on according to the principle of stump extraction, which means stumps are removed by grabbing technology. Experiments have been carried out to reduce the extraction force. In the Great Hungarian Lowland, where large areas require the operation implementation, stump extraction is done by special, hydraulic driven baggers equipped with a special bucket. During operation of the equipment, we carried out measurements of the extraction force and the time requirement. The experiments are designed to carry out the measurements with different soils and different tree species. According to our proposal the suitable force and torque required to remove stumps can be significantly reduced if before the lifting the soil — root connection is loosened. One of the possible ways to implement this task is the use of vibration. Since relatively great vibration power and wide domain of frequency are necessary, therefore we prepared the loosening machinery elements of alternating-current hydraulics system. Based on constructions variants we created a tractor-mounted experimental alternating-current hydraulic stump-loosening machine. It was designed with the ability to produce horizontal vibration in order to loosen stumps.


2019 ◽  
Author(s):  
M. Alexander Ardagh ◽  
Manish Shetty ◽  
Anatoliy Kuznetsov ◽  
Qi Zhang ◽  
Phillip Christopher ◽  
...  

Catalytic enhancement of chemical reactions via heterogeneous materials occurs through stabilization of transition states at designed active sites, but dramatically greater rate acceleration on that same active site is achieved when the surface intermediates oscillate in binding energy. The applied oscillation amplitude and frequency can accelerate reactions orders of magnitude above the catalytic rates of static systems, provided the active site dynamics are tuned to the natural frequencies of the surface chemistry. In this work, differences in the characteristics of parallel reactions are exploited via selective application of active site dynamics (0 < ΔU < 1.0 eV amplitude, 10<sup>-6</sup> < f < 10<sup>4</sup> Hz frequency) to control the extent of competing reactions occurring on the shared catalytic surface. Simulation of multiple parallel reaction systems with broad range of variation in chemical parameters revealed that parallel chemistries are highly tunable in selectivity between either pure product, even when specific products are not selectively produced under static conditions. Two mechanisms leading to dynamic selectivity control were identified: (i) surface thermodynamic control of one product species under strong binding conditions, or (ii) catalytic resonance of the kinetics of one reaction over the other. These dynamic parallel pathway control strategies applied to a host of chemical conditions indicate significant potential for improving the catalytic performance of many important industrial chemical reactions beyond their existing static performance.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wenyan Du ◽  
Kangqi Shen ◽  
Yuruo Qi ◽  
Wei Gao ◽  
Mengli Tao ◽  
...  

AbstractRechargeable room temperature sodium–sulfur (RT Na–S) batteries are seriously limited by low sulfur utilization and sluggish electrochemical reaction activity of polysulfide intermediates. Herein, a 3D “branch-leaf” biomimetic design proposed for high performance Na–S batteries, where the leaves constructed from Co nanoparticles on carbon nanofibers (CNF) are fully to expose the active sites of Co. The CNF network acts as conductive “branches” to ensure adequate electron and electrolyte supply for the Co leaves. As an effective electrocatalytic battery system, the 3D “branch-leaf” conductive network with abundant active sites and voids can effectively trap polysulfides and provide plentiful electron/ions pathways for electrochemical reaction. DFT calculation reveals that the Co nanoparticles can induce the formation of a unique Co–S–Na molecular layer on the Co surface, which can enable a fast reduction reaction of the polysulfides. Therefore, the prepared “branch-leaf” CNF-L@Co/S electrode exhibits a high initial specific capacity of 1201 mAh g−1 at 0.1 C and superior rate performance.


Author(s):  
E.G. Shidlovskaya ◽  
L. Schimansky-Geier ◽  
Yu.M. Romanovsky

A two dimensional model for the substrate inside a pocket of an active site of an enzyme is presented and investigated as a vibrational system. The parameters of the system are evaluated for α-chymotrypsin. In the case of internal resonance it is analytically and numerically shown that the energy concentrated on a certain degree of freedom might be several times larger than in the non-resonant case. Additionally, the system is driven by harmonic excitations and again energy due to nonlinear phenomena is redistributed inhomogeneously. These results may be of importance for the determination of the rates of catalytic events of substrates bound in pockets of active sites.


1975 ◽  
Vol 53 (7) ◽  
pp. 747-757 ◽  
Author(s):  
Graham J. Moore ◽  
N. Leo Benoiton

The initial rates of hydrolysis of Bz-Gly-Lys and Bz-Gly-Phe by carboxypeptidase B (CPB) are increased in the presence of the modifiers β-phenylpropionic acid, cyclohexanol, Bz-Gly, and Bz-Gly-Gly. The hydrolysis of the tripeptide Bz-Gly-Gly-Phe is also activated by Bz-Gly and Bz-Gly-Gly, but none of these modifiers activate the hydrolysis of Bz-Gly-Gly-Lys, Z-Leu-Ala-Phe, or Bz-Gly-phenyllactic acid by CPB. All modifiers except cyclohexanol display inhibitory modes of binding when present in high concentration.Examination of Lineweaver–Burk plots in the presence of fixed concentrations of Bz-Gly has shown that activation of the hydrolysis of neutral and basic peptides by CPB, as reflected in the values of the extrapolated parameters, Km(app) and keat, occurs by different mechanisms. For Bz-Gly-Gly-Phe, activation occurs because the enzyme–modifier complex has a higher affinity than the free enzyme for the substrate, whereas activation of the hydrolysis of Bz-Gly-Lys derives from an increase in the rate of breakdown of the enzyme–substrate complex to give products.Cyclohexanol differs from Bz-Gly and Bz-Gly-Gly in that it displays no inhibitory mode of binding with any of the substrates examined, activates only the hydrolysis of dipeptides by CPB, and has a greater effect on the hydrolysis of the basic dipeptide than on the neutral dipeptide. Moreover, when Bz-Gly-Lys is the substrate, cyclohexanol activates its hydrolysis by CPB by increasing both the enzyme–substrate binding affinity and the rate of the catalytic step, an effect different from that observed when Bz-Gly is the modifier.The anomalous kinetic behavior of CPB is remarkably similar to that of carboxypeptidase A, and is a good indication that both enzymes have very similar structures in and around their respective active sites. A binding site for activator molecules down the cleft of the active site is proposed for CPB to explain the observed kinetic behavior.


1992 ◽  
Vol 285 (3) ◽  
pp. 957-964 ◽  
Author(s):  
T G Warner ◽  
R Harris ◽  
R McDowell ◽  
E R Vimr

The sialidase from Salmonella typhimurium LT2 was characterized by using photoaffinity-labelling techniques. The well-known sialidase inhibitor 5-acetamido-2,6-anhydro-3,5-dideoxy-D-glycero-D-galacto-non- 2-enonic acid (Neu5Ac2en) was modified to contain an amino group at C-9, which permitted the incorporation of 4-azidosalicylic acid in amide linkage at this position. Labelling of the purified protein with the radioactive (125I) photoprobe was determined to be highly specific for a region within the active-site cavity. This conclusion was based on the observation that the competitive inhibitor Neu5Ac2en in the photolysis mixture prevented labelling of the protein. In contrast, compounds with structural and chemical features similar to the probe and Neu5Ac2en, but which were not competitive enzyme inhibitors, did not affect the photolabelling of the protein. The peptide interacting with the probe was identified by CNBr treatment of the labelled protein, followed by N-terminal sequence analysis. Inspection of the primary structure of the protein, predicted from the cloned structural gene for the sialidase [Hoyer, Hamilton, Steenbergen & Vimr (1992) Mol. Microbiol. 6, 873-884] revealed that the label was incorporated into a 9.6 kDa fragment situated within the terminal third of the molecule near the C-terminal end. Secondary-structural predictions using the Garnier-Robson algorithm [Garnier, Osguthorpe & Robson (1978) J. Mol. Biol. 120, 97-120] of the labelled peptide revealed a structural similarity to the active site of influenza-A- and Sendai-HN-virus sialidases with a repetitive series of alternating beta-sheets connected with loops.


Author(s):  
Yu. Selikhov ◽  
K. Gorbunov ◽  
V. Stasov

Solar energy is widely used in solar systems, where economy and ecology are combined. Namely, this represents an important moment in the era of depletion of energy resources. The use of solar energy is a promising economical item for all countries of the world, meeting their interests also in terms of energy independence, thanks to which it is confidently gaining a stable position in the global energy sector. The cost of heat obtained through the use of solar installations largely depends on the radiation and climatic conditions of the area where the solar installation is used. The climatic conditions of our country, especially the south, make it possible to use the energy of the Sun to cover a significant part of the need for heat. A decrease in the reserves of fossil fuel and its rise in price have led to the development of optimal technical solutions, efficiency and economic feasibility of using solar installations. And today this is no longer an idle curiosity, but a conscious desire of homeowners to save not only their financial budget, but also health, which is possible only with the use of alternative energy sources, such as: double-circuit solar installations, geothermal heat pumps (HP), wind power generators. The problem is especially acute in the heat supply of housing and communal services (HCS), where the cost of fuel for heat production is several times higher than the cost of electricity. The main disadvantages of centralized heat supply sources are low energy, economic and environmental efficiency. And high transport tariffs for the delivery of energy carriers and frequent accidents on heating mains exacerbate the negative factors inherent in traditional district heating. One of the most effective energy-saving methods that make it possible to save fossil fuel, reduce environmental pollution, and meet the needs of consumers in process heat is the use of heat pump technologies for heat production.


1970 ◽  
Vol 46 (4) ◽  
pp. 487-494
Author(s):  
ATM Kamrul Hasan

Multiplicity of active-site in heterogeneous Ziegler-Natta catalysts and its correlation with polymer microstructure was studied through the surface structure analysis of catalyst by computer simulation of X-ray Photoelectron Spectroscopy (XPS) data and microstructure investigation of polypropylene chains based on the deconvolution of the molecular weight distribution curves by multiple Flory most probable distributions using Gel Permeation Chromatography (GPC) method. The number and relative intensities of these peaks were found correlated to the distribution of multiple active sites. In this investigation, four individual categories of active sites were identified, each of which yields polypropylene with unique properties of molecular weight and chain structure different from other active sites. The reason of the multiplicity of active sites was determined by the presence of different locations of surface titanium species coordinated with other surface atoms or molecules. These different surface complexes of active species determine the multiple active site nature of catalyst which replicates the microtacticity, molecular weight and chain microstructure distribution of polymer. Keywords: Ziegler-Natta catalyst; Multiple active sites; Flory components; Computer simulation; Deconvolution; MWD. DOI: http://dx.doi.org/10.3329/bjsir.v46i4.9596 BJSIR 2011; 46(4): 487-494


2018 ◽  
Vol 115 (48) ◽  
pp. 12124-12129 ◽  
Author(s):  
Benjamin E. R. Snyder ◽  
Max L. Bols ◽  
Hannah M. Rhoda ◽  
Pieter Vanelderen ◽  
Lars H. Böttger ◽  
...  

A direct, catalytic conversion of benzene to phenol would have wide-reaching economic impacts. Fe zeolites exhibit a remarkable combination of high activity and selectivity in this conversion, leading to their past implementation at the pilot plant level. There were, however, issues related to catalyst deactivation for this process. Mechanistic insight could resolve these issues, and also provide a blueprint for achieving high performance in selective oxidation catalysis. Recently, we demonstrated that the active site of selective hydrocarbon oxidation in Fe zeolites, named α-O, is an unusually reactive Fe(IV)=O species. Here, we apply advanced spectroscopic techniques to determine that the reaction of this Fe(IV)=O intermediate with benzene in fact regenerates the reduced Fe(II) active site, enabling catalytic turnover. At the same time, a small fraction of Fe(III)-phenolate poisoned active sites form, defining a mechanism for catalyst deactivation. Density-functional theory calculations provide further insight into the experimentally defined mechanism. The extreme reactivity of α-O significantly tunes down (eliminates) the rate-limiting barrier for aromatic hydroxylation, leading to a diffusion-limited reaction coordinate. This favors hydroxylation of the rapidly diffusing benzene substrate over the slowly diffusing (but more reactive) oxygenated product, thereby enhancing selectivity. This defines a mechanism to simultaneously attain high activity (conversion) and selectivity, enabling the efficient oxidative upgrading of inert hydrocarbon substrates.


2021 ◽  
Author(s):  
Prajay Patel ◽  
Robert Wells ◽  
David Kaphan ◽  
Massimiliano Delferro ◽  
Rex T. Skodje ◽  
...  

<div> <div> <p></p><p><a>A crucial consideration for supported heterogeneous catalysts is the non-uniformity of the active sites, particularly for Supported Organometallic Catalysts (SOMCs). Standard spectroscopic techniques, such as X-ray absorption spectroscopy (XAS), reflect the nature of the most populated sites, which are often intrinsically structurally distinct from the most catalytically active sites. With computational models, often only a few representative structures are used to depict catalytic active sites on a surface, even though there are numerous observable factors of surface heterogeneity that contribute to the kinetically favorable active species. A previously reported study on the mechanism of a surface organovanadium(III) catalyst [(SiO)V<sup>III</sup>(Mes)(THF)] for styrene hydrogenation yielded two possible mechanisms: heterolytic cleavage and redox cycling. These two mechanistic scenarios are challenging to differentiate experimentally based on the kinetic readouts of the catalyst are identical. To showcase the importance of modeling surface heterogeneity and its effect on catalytic activity, density functional theory (DFT) computational models of a series of potential active sites of [(SiO)V<sup>III</sup>(Mes)(THF)] for the reaction pathways are applied in combination with kinetic Monte Carlo (kMC) simulations. Computed results were t then compared to the previously reported experimental kinetic study</a><a>.: 1) DFT free energy reaction pathways indicated the likely active site and pathway for styrene hydrogenation; a heterolytic cleavage pathway requiring a bare tripodal vanadium site. 2) From the kMC simulations, a mixture of the different bond lengths from the support oxygen to the metal center was required to qualitatively describe the experimentally observed kinetic aspects of a supported organovanadium(III) catalyst for olefin hydrogenation. </a>This work underscores the importance of modeling surface heterogeneity in computational catalysis.</p><p></p></div></div>


Sign in / Sign up

Export Citation Format

Share Document