scholarly journals Genetic Variance and Correlation of Forage Yield and Quality Traits in Tropically Adapted Maize

2021 ◽  
Vol 50 (1) ◽  
pp. 45-52
Author(s):  
Nazatul Shima Naharudin ◽  
Maizura Abu Sin ◽  
Ghizan Saleh

Two F2 populations segregating for biomass yield and forage quality traits were developed from two separate crosses of tropically adapted maize inbred lines. The parental, F1 and F2 generations of both crosses were evaluated to estimate broad sense heritability, genetic advance and correlations for these traits to suggest the best traits as selection criteria towards breeding forage maize with high yield and quality.In Cross 1, biomass yield trait with the highest broad-sense heritability was plant height (70.03%), whereas forage quality trait with the highest heritability estimate was crude protein content (66.60%). Heritability estimates in Cross 2 were high for all biomass yield traits and forage quality traits (>50% for all traits). Indigestible cell wall component represented by acid detergent lignin content was found to be highly heritable in both populations. High genetic advance as percent of mean were found for fresh and dry plant yield as well as for lignin content in both populations. Correlation analysis on all traits showed that all biomass yield components were significantly correlated. All traits related to cell wall content were positively correlated and acid detergent lignin was positively correlated with dry plant yield. Traits with high to moderate heritability and high predicted genetic advance, namely plant height, fresh plant yield and protein content can be used as selection criteria to improve maize biomass yield and nutritive quality for forage utilization. Selecting for higher biomass yield would also result in selecting individuals with higher lignin content as shown by the correlation analysis.

Crop Science ◽  
2014 ◽  
Vol 54 (1) ◽  
pp. 111-126 ◽  
Author(s):  
Steven R. Larson ◽  
Kevin B. Jensen ◽  
Joseph G. Robins ◽  
Blair L. Waldron

2017 ◽  
Vol 45 (2) ◽  
pp. 517-524
Author(s):  
Sorin CIULCA ◽  
Natalia CARP ◽  
Emilian MADOŞA ◽  
Adriana CIULCA ◽  
Radu ŞUMĂLAN

Information on the inheritance of yield and quality traits is important for the selection of parents and breeding approaches to be adopted for the improvement of strawberry. The present study aimed to estimate the combining ability and gene effects for plant yield, fruits number/plant, fruit weight, pulp firmness and sugar content of strawberries in order to identify the best genitors and promising crosses, in 30 hybrids of six parents. The additive and non-additive gene action as well as the maternal effects was involved in the inheritance of the studied traits. For all traits, especially for fruit weight and plant yield, the additive gene action was more important than the non-additive one. The parents ‘A1’ and ‘Alba’ showed a higher concentration of favourable alleles for plant yield and fruits number, and they will allow the increase of plant yield when used as a donor of pollen and the increase of fruit number when used as a recipient of pollen. The variety ‘Marmolada’ was a good general combiner for sugar content, pulp firmness and fruit weight, especially when used as a female genitor. These parents could be used in hybridization in order to accelerate the genetic improvement of some yield and quality traits in strawberries. The cross ‘Mira’ × ‘Onda’ expressed desirable specific combining ability effects for yield traits and can be successfully use in strawberries breeding programs. In the case of ‘Alba’ × ‘Clery’ there is a high probability to select progenies with valuable yield traits associated with sweet fruits.


2022 ◽  
Vol 12 ◽  
Author(s):  
Vincent Colas ◽  
Philippe Barre ◽  
Frederik van Parijs ◽  
Lukas Wolters ◽  
Yannick Quitté ◽  
...  

Perennial ryegrass is an important forage crop in dairy farming, either for grazing or haying purposes. To further optimise the forage use, this study focused on understanding forage digestibility in the two most important cuts of perennial ryegrass, the spring cut at heading and the autumn cut. In a highly diverse collection of 592 Lolium perenne genotypes, the organic matter digestibility (OMD) and underlying traits such as cell wall digestibility (NDFD) and cell wall components (cellulose, hemicellulose, and lignin) were investigated for 2 years. A high genotype × season interaction was found for OMD and NDFD, indicating differences in genetic control of these forage quality traits in spring versus autumn. OMD could be explained by both the quantity of cell wall content (NDF) and the quality of the cell wall content (NDFD). The variability in NDFD in spring was mainly explained by differences in hemicellulose. A 1% increase of the hemicellulose content in the cell wall (HC.NDF) resulted in an increase of 0.81% of NDFD. In autumn, it was mainly explained by the lignin content in the cell wall (ADL.NDF). A 0.1% decrease of ADL.NDF resulted in an increase of 0.41% of NDFD. The seasonal traits were highly heritable and showed a higher variation in autumn versus spring, indicating the potential to select for forage quality in the autumn cut. In a candidate gene association mapping approach, in which 503 genes involved in cell wall biogenesis, plant architecture, and phytohormone biosynthesis and signalling, identified significant quantitative trait loci (QTLs) which could explain from 29 to 52% of the phenotypic variance in the forage quality traits OMD and NDFD, with small effects of each marker taken individually (ranging from 1 to 7%). No identical QTLs were identified between seasons, but within a season, some QTLs were in common between digestibility traits and cell wall composition traits confirming the importance of hemicellulose concentration for spring digestibility and lignin concentration in NDF for autumn digestibility.


2011 ◽  
Vol 39 (2) ◽  
pp. 190 ◽  
Author(s):  
Hassan MONIRIFAR

An investigation was carried out using 13 alfalfa accessions during 2009 to 2010 and was located on the experimental field of East Azarbaijan Agriculture and Natural Resources Research Center (AZARAN), Iran. The objective of this research was to evaluate positive effect and reliability of yield and quality traits as selection criteria in alfalfa breeding. Significant differences were observed for most of the yield and quality components. Variability coefficients were high for yield components, while quality traits showed relatively low variation. Plant height (PH), number of stems (NS), number of nodes (NN) and leaf size (LS) was positively correlated with plant yield. Crude protein (CP) content was correlated directly with acid detergent fiber (ADF) and natural detergent fiber (NDF) while correlation with crude fiber (CF) was inverse. The direct effect of the number of stems on yield had the highest value (0.698, P


Author(s):  
S. Saravanan ◽  
R. Sushmitha ◽  
M. Arumugam Pillai

Background: Forty two crosses involving seven lines and six testers were studied for economically important yield contributing and quality traits to test the magnitude of genetic components and diversity. Formulation of efficient breeding methodology is possible by targeting the genetic architecture of genotypes. Methods: The systematic breeding programme involves generating genetic variability besides sorting off the diverse genotypes and utilizing the extreme phenotypes for producing stable varieties. Genetic diversity helps to achieve the greater continuum of genetic variability in segregating populations to reach for ideal selection of progenies. Heritability and genetic advance are other important selection parameters for retrieving better genotype through selection. Result: Significant differences in analysis of variance were recorded for all the traits. The results signified the greater value of phenotypic coefficient of variation (PCV) than genotypic coefficient of variation (GCV) and environment coefficient of variation (ECV) pertaining to the test traits studied. Among agronomical characters, the GCV and PCV were reported to be in higher estimate for number of productive tillers per plant, number of grains per panicle, single plant yield and among quality characters for gelatinization temperature (GT), length breadth (LB) ratio, gel consistency and amylose content. The present study adverted that among the yield and grain quality characters viz., number of productive tillers, number of grains per panicle, single plant yield, plant height, 1000 grain weight, milling percentage and grain length could be easily inherited to next generation due to high heritability. Whereas breadth elongation ratio and linear elongation ratio are influenced by environmental factors due to their low heritability. Further, the number of productive tillers, number of grains per panicle, single plant yield, plant height, Gel consistency and amylose content exhibited higher PCV, GCV, heritability and genetic advance and hence direct selection can be made for target traits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sen Lin ◽  
Cesar Augusto Medina ◽  
O. Steven Norberg ◽  
David Combs ◽  
Guojie Wang ◽  
...  

Autotetraploid alfalfa is a major hay crop planted all over the world due to its adaptation in different environments and high quality for animal feed. However, the genetic basis of alfalfa quality is not fully understood. In this study, a diverse panel of 200 alfalfa accessions were planted in field trials using augmented experimental design at three locations in 2018 and 2019. Thirty-four quality traits were evaluated by Near Infrared Reflectance Spectroscopy (NIRS). The plants were genotyped using a genotyping by sequencing (GBS) approach and over 46,000 single nucleotide polymorphisms (SNPs) were obtained after variant calling and filtering. Genome-wide association studies (GWAS) identified 28 SNP markers associated with 16 quality traits. Among them, most of the markers were associated with fiber digestibility and protein content. Phenotypic variations were analyzed from three locations and different sets of markers were identified by GWAS when using phenotypic data from different locations, indicating that alfalfa quality traits were also affected by environmental factors. Among different sets of markers identified by location, two markers were associated with nine traits of fiber digestibility. One marker associated with lignin content was identified consistently in multiple environments. Putative candidate genes underlying fiber-related loci were identified and they are involved in the lignin and cell wall biosynthesis. The DNA markers and associated genes identified in this study will be useful for the genetic improvement of forage quality in alfalfa after the validation of the markers.


2013 ◽  
Vol 38 (5) ◽  
pp. 800-807
Author(s):  
Hui ZHI ◽  
Zhen-Gang NIU ◽  
Guan-Qing JIA ◽  
Yang CHAI ◽  
Wei LI ◽  
...  

Euphytica ◽  
2009 ◽  
Vol 170 (1-2) ◽  
pp. 99-107 ◽  
Author(s):  
U. C. M. Anhalt ◽  
J. S. Heslop-Harrison (Pat) ◽  
H. P. Piepho ◽  
S. Byrne ◽  
S. Barth

Sign in / Sign up

Export Citation Format

Share Document