Fabrication of Materials and Photoconductive Antennas on their Basis for Generation and Detection of the Pulsed and Continuous-Wave Terahertz (THz) Radiation

2017 ◽  
Vol 19 (5) ◽  
pp. 294-302
Author(s):  
A.S Bugayev ◽  
◽  
I.A. Glinskiy ◽  
S.S. Pushkarev ◽  
D.V. Lavrukhin ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
I. R. Hooper ◽  
N. E. Grant ◽  
L. E. Barr ◽  
S. M. Hornett ◽  
J. D. Murphy ◽  
...  

AbstractPhotomodulators for mm-wave and THz radiation are an essential component for many imaging and signal processing applications. While a myriad of schemes have been devised to enhance photomodulation by enhancing the light-matter interaction, there has been less focus on the photoconductive materials themselves, which are often the limiting factor. Here, we present an approach to increase the photomodulation efficiency of silicon by orders of magnitude, using post treatment of off-the-shelf silicon wafers. The increase in efficiency removes the need for bulky and costly amplified laser sources, and creates the potential for compact and cost-effective modulators for real-world applications. By passivating the surfaces of long bulk-lifetime silicon wafers with Al2O3, the recombination of the photoexcited carriers at the surfaces is mostly eliminated. This results in vastly longer excess carrier lifetimes (up to ~50 ms), with corresponding increases in photoconductivity. The resulting modulators are highly efficient, with the transmission through them being reduced from ~90% to <10% over a narrow frequency band with a continuous wave excitation intensity of just 10 Wm−2, whilst modulation factors of greater than 80% can be achieved over a broad band with similar intensities. We also discuss the limitations of such long-lifetime modulators for applications where the switching speed or spatial resolution of a modulator may be critical.


ISRN Optics ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Michael A. Startsev ◽  
Abdulhakem Y. Elezzabi

Continuous-wave terahertz (THz) radiation spectroscopy was performed on high explosive materials using a tuneable optical parametric oscillator (OPO). Military grade, solid-phase, explosive substances, such as cyclotetramethylenetetranitramine (HMX), cyclotrimethylenetrinitramine (RDX), pentaerythritol tetranitrate (PETN), and composition-4, were spectrally scanned over the 0.7–1.9 THz frequency range under experimental conditions modeling that of “real-world” security screenings. Spectral peak locations and spectral line broadening effects were quantified using a Lorentz lineshape fit algorithm. The full-width half-maximum (FWHM) parameter computed by the Lorentz fit algorithm was shown to help in the identification of samples with broad and sparse spectral characteristics. A concealed explosives identification scheme was demonstrated through raster scan THz frequency radiation imaging at specific OPO tuning frequencies.


Author(s):  
T. Harter ◽  
S. Muehlbrandt ◽  
S. Ummethala ◽  
A. Schmid ◽  
A. Bacher ◽  
...  

2003 ◽  
Vol 13 (02) ◽  
pp. 601-676 ◽  
Author(s):  
S. P. Mickan ◽  
X.-C. Zhang

Terahertz (THz) radiation occupies part of the electromagnetic spectrum between the infrared and microwave bands. Until recently, technology at THz frequencies was under-developed compared to the rest of the electromagnetic spectrum, leaving a gap between millimeter waves and the far-infrared (FIR). In the past decade, interest in the THz gap has been increased by the development of ultrafast laser-based T-ray systems and their demonstration of diffraction-limited spatial resolution, picosecond temporal resolution, DC-THz spectral bandwidth and signal-to-noise ratios above 104. This chapter reviews the development, the state of the art and the applications of T-ray spectrometers. Continuous-wave (CW) THz-frequency sources and detectors are briefly introduced in comparison to ultrafast pulsed THz systems. An emphasis is placed on experimental applications of T-rays to sensing and imaging, with a view to the continuing advance of technologies and applications in the THz band.


Sign in / Sign up

Export Citation Format

Share Document