Silicon-Plasmonic Photomixer for Generation and Homodyne Reception of Continuous-Wave THz Radiation

Author(s):  
T. Harter ◽  
S. Muehlbrandt ◽  
S. Ummethala ◽  
A. Schmid ◽  
A. Bacher ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
I. R. Hooper ◽  
N. E. Grant ◽  
L. E. Barr ◽  
S. M. Hornett ◽  
J. D. Murphy ◽  
...  

AbstractPhotomodulators for mm-wave and THz radiation are an essential component for many imaging and signal processing applications. While a myriad of schemes have been devised to enhance photomodulation by enhancing the light-matter interaction, there has been less focus on the photoconductive materials themselves, which are often the limiting factor. Here, we present an approach to increase the photomodulation efficiency of silicon by orders of magnitude, using post treatment of off-the-shelf silicon wafers. The increase in efficiency removes the need for bulky and costly amplified laser sources, and creates the potential for compact and cost-effective modulators for real-world applications. By passivating the surfaces of long bulk-lifetime silicon wafers with Al2O3, the recombination of the photoexcited carriers at the surfaces is mostly eliminated. This results in vastly longer excess carrier lifetimes (up to ~50 ms), with corresponding increases in photoconductivity. The resulting modulators are highly efficient, with the transmission through them being reduced from ~90% to <10% over a narrow frequency band with a continuous wave excitation intensity of just 10 Wm−2, whilst modulation factors of greater than 80% can be achieved over a broad band with similar intensities. We also discuss the limitations of such long-lifetime modulators for applications where the switching speed or spatial resolution of a modulator may be critical.


ISRN Optics ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Michael A. Startsev ◽  
Abdulhakem Y. Elezzabi

Continuous-wave terahertz (THz) radiation spectroscopy was performed on high explosive materials using a tuneable optical parametric oscillator (OPO). Military grade, solid-phase, explosive substances, such as cyclotetramethylenetetranitramine (HMX), cyclotrimethylenetrinitramine (RDX), pentaerythritol tetranitrate (PETN), and composition-4, were spectrally scanned over the 0.7–1.9 THz frequency range under experimental conditions modeling that of “real-world” security screenings. Spectral peak locations and spectral line broadening effects were quantified using a Lorentz lineshape fit algorithm. The full-width half-maximum (FWHM) parameter computed by the Lorentz fit algorithm was shown to help in the identification of samples with broad and sparse spectral characteristics. A concealed explosives identification scheme was demonstrated through raster scan THz frequency radiation imaging at specific OPO tuning frequencies.


2003 ◽  
Vol 13 (02) ◽  
pp. 601-676 ◽  
Author(s):  
S. P. Mickan ◽  
X.-C. Zhang

Terahertz (THz) radiation occupies part of the electromagnetic spectrum between the infrared and microwave bands. Until recently, technology at THz frequencies was under-developed compared to the rest of the electromagnetic spectrum, leaving a gap between millimeter waves and the far-infrared (FIR). In the past decade, interest in the THz gap has been increased by the development of ultrafast laser-based T-ray systems and their demonstration of diffraction-limited spatial resolution, picosecond temporal resolution, DC-THz spectral bandwidth and signal-to-noise ratios above 104. This chapter reviews the development, the state of the art and the applications of T-ray spectrometers. Continuous-wave (CW) THz-frequency sources and detectors are briefly introduced in comparison to ultrafast pulsed THz systems. An emphasis is placed on experimental applications of T-rays to sensing and imaging, with a view to the continuing advance of technologies and applications in the THz band.


Photonics ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Luigi Consolino ◽  
Annamaria Campa ◽  
Davide Mazzotti ◽  
Miriam Vitiello ◽  
Paolo De Natale ◽  
...  

We report on the development, testing, and performance analysis of a bow-tie resonant cavity for terahertz (THz) radiation, injected with a continuous-wave 2.55 THz quantum cascade laser. The bow-tie cavity employs a wire-grid polarizer as input/output coupler and a pair of copper spherical mirrors coated with an unprotected 500 nm thick gold layer. The improvements with respect to previous setups have led to a measured finesse value F = 123, and a quality factor Q = 5.1·105. The resonator performances and the relevant parameters are theoretically predicted and discussed, and a comparison among simulated and experimental spectra is given.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anton Zaitsev ◽  
Dmitry Zykov ◽  
Petr Demchenko ◽  
Mikhail Novoselov ◽  
Ravshanjon Nazarov ◽  
...  

AbstractThe hyperbolic materials are strongly anisotropic media with a permittivity/permeability tensor having diagonal components of different sign. They combine the properties of dielectric and metal-like media and are described with hyperbolic isofrequency surfaces in wave-vector space. Such media may support unusual effects like negative refraction, near-field radiation enhancement and nanoscale light confinement. They were demonstrated mainly for microwave and infrared frequency ranges on the basis of metamaterials and natural anisotropic materials correspondingly. For the terahertz region, the tunable hyperbolic media were demonstrated only theoretically. This paper is dedicated to the first experimental demonstration of an optically tunable terahertz hyperbolic medium in 0.2–1.0 THz frequency range. The negative phase shift of a THz wave transmitted through the structure consisting of 40 nm (in relation to THz wave transmitted through substrate) to 120 nm bismuth film (in relation to both THz waves transmitted through substrate and air) on 21 µm mica substrate is shown. The optical switching of topological transition between elliptic and hyperbolic isofrequency contours is demonstrated for the effective structure consisting of 40 nm Bi on mica. For the case of 120 nm Bi on mica, the effective permittivity is only hyperbolic in the studied range. It is shown that the in-plane component of the effective permittivity tensor may be positive or negative depending on the frequency of THz radiation and continuous-wave optical pumping power (with a wavelength of 980 nm), while the orthogonal one is always positive. The proposed optically tunable structure may be useful for application in various fields of the modern terahertz photonics.


2010 ◽  
Vol 437 ◽  
pp. 271-275
Author(s):  
Tilo Pfeifer ◽  
Stephan Bichmann

Terahertz radiation, which fills the gap between 100 GHz and 10 THz ( = 30 µm – 3 mm) in the electro-magnetic spectrum, has seldom been used outside of astronomy and other scientific research. However, in recent years there has been a significant interest in investigating THz radiation for different new applications. Especially the ability of terahertz radiation to penetrate deep into many organic materials without the damage associated with ionizing radiation such as X-rays lead to recent interests chiefly in the fields of security technology and biomedical imaging. The attribute of many different materials to be transparent for terahertz radiation, was also the reason for many difficulties in practical applications outside of research. Using radiation that can pass through so many materials so well makes detection difficult. In addition, sources to generate light at terahertz frequencies have suffered from low output intensity and other problems. Since the 1990s, technical breakthroughs in sources and detectors have brought terahertz technology within striking distance of significant commercial markets [1]. The pressure to develop new terahertz sources arose from two dramatically different groups - ultrafast timedomain spectroscopists who wanted to work with longer wavelengths, and long wavelength radio astronomers who wanted to work with shorter wavelengths. Today there are continuous-wave (CW) sources available as well as pulsed sources [2]. The aim of this paper is to provide an overview of key scientific developments which currently represent the basics of the mentioned THz technology. Beginning with the working principle of opto-electronic THz sources and detectors, the paper explains different setups for transmitting and using THz radiation. Furthermore it shows different applications of different business branches and gives an outlook for industrial application in the fields of metrology and quality control.


Sign in / Sign up

Export Citation Format

Share Document