scholarly journals Analysis of efficiency of feed pump control by changing rotation of rotor for power plants of various types

Vestnik IGEU ◽  
2021 ◽  
pp. 5-14
Author(s):  
G.V. Ledukhovsky ◽  
S.D. Gorshenin ◽  
E.V. Zinovyeva ◽  
A.S. Zinovyeva

The type of power plant feed pump drive is selected in the course of a feasibility study. Domestic experience is based on recommendations that have been obtained in the middle of the last century when fuel was relatively cheap. These recommendations are currently being revised. Manufacturers of technological tools of pumps frequency control offer to install fluid couplings, variable frequency electric drives or drive turbines for power plants of various types. At the same time, they declare the high efficiency of such solutions. But the effect is often calculated based on energy savings indicators for the pump drive without considering changes of the operating modes of other equipment of the power plant. An urgent task is a comprehensive assessment of the effectiveness of the measures under consideration. This assessment should consider the objective parameters and modes of facilities operation, as well as interrelation of power electricity cost for own needs and loads of the basic equipment. To determine the technical effect of application of various methods of frequency control of feed pumps, models are used that are developed on the individual basis for each power plant based on the energy characteristics of the equipment. These models include algorithms for heat and electrical balances. Operational characteristics of the feed pumps and performance assessment are calculated according to the known techniques. Based on a unified methodological approach, the authors have developed mathematical models of condensing power supply units and combined heat and power plants for an initial pressure of 12,8 MPa. These models make it possible to determine the effect of frequency control of feed pumps based on data for real time in operation considering the interrelation of power electricity cost for own needs and loads of the basic equipment. Calculation of index of performance of application of various means of frequency control of feed pump performance have been carried out. It is revealed that to assess the efficiency of application of technological tools of frequency control of feed pumps, it is of decisive importance to consider the experience of equipment load, load schedules, the interrelation of power electricity cost for own needs and loads of the basic equipment. No general recommendations to use certain methods of feed pumps control are applicable, when conducting such an assessment.

Author(s):  
James Spelling ◽  
Björn Laumert ◽  
Torsten Fransson

A dynamic simulation model of a hybrid solar gas-turbine power plant has been developed, allowing determination of its thermodynamic and economic performance. In order to examine optimum gas-turbine designs for hybrid solar power plants, multi-objective thermoeconomic analysis has been performed, with two conflicting objectives: minimum levelized electricity costs and minimum specific CO2 emissions. Optimum cycle conditions: pressure-ratio, receiver temperature, turbine inlet temperature and flow rate, have been identified for a 15 MWe gas-turbine under different degrees of solarization. At moderate solar shares, the hybrid solar gas-turbine concept was shown to provide significant water and CO2 savings with only a minor increase in the levelized electricity cost.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1687 ◽  
Author(s):  
Irene Muñoz-Benavente ◽  
Anca D. Hansen ◽  
Emilio Gómez-Lázaro ◽  
Tania García-Sánchez ◽  
Ana Fernández-Guillamón ◽  
...  

An alternative approach for combined frequency control in multi-area power systems with significant wind power plant integration is described and discussed in detail. Demand response is considered as a decentralized and distributed resource by incorporating innovative frequency-sensitive load controllers into certain thermostatically controlled loads. Wind power plants comprising variable speed wind turbines include an auxiliary frequency control loop contributing to increase total system inertia in a combined manner, which further improves the system frequency performance. Results for interconnected power systems show how the proposed control strategy substantially improves frequency stability and decreases peak frequency excursion (nadir) values. The total need for frequency regulation reserves is reduced as well. Moreover, the requirements to exchange power in multi-area scenarios are significantly decreased. Extensive simulations under power imbalance conditions for interconnected power systems are also presented in the paper.


2018 ◽  
Vol 27 ◽  
pp. 02003 ◽  
Author(s):  
Anatoly Lagerev ◽  
Valentina Khanaeva ◽  
Konstantin Smirnov

The paper is concerned with a methodological approach to the assessment of comparative effectiveness of projects for the construction of export-oriented power plants and transmission lines under uncertainty of the power industry development in the region. The recommendations are given to select the most preferable project for the construction of an export-oriented power plant and transmission line for power export from East Siberia to China.


Author(s):  
Rainer Quinkertz ◽  
Thomas Thiemann ◽  
Kai Gierse

High efficiency and flexible operation continue to be the major requirements for power generation because of the benefits of reduced emissions and reduced fuel consumption, i.e. reduced operating costs. Ultra super critical (USC) steam parameters are the basis for state of the art technology of coal fired power plants with highest efficiency. An important part of the development process for advanced steam turbines is product validation. This step involves more than just providing evidence of customer guaranteed values (e.g. heat rate or electric output). It also involves proving that the design targets have been achieved and that the operational experience is fed back to designers to further develop the design criteria and enable the next step in the development of highly sophisticated products. What makes product validation for large size power plant steam turbines especially challenging is the fact that, due to the high costs of the required infrastructure, steam turbine manufacturers usually do not have a full scope / full scale testing facility. Therefore, good customer relations are the key to successful validation. This paper describes an extensive validation program for a modern state of the art ultra supercritical steam turbine performed at an operating 1000 MW steam power plant in China. Several measuring points in addition to the standard operating measurements were installed at one of the high pressure turbines to record the temperature distribution, e.g. to verify the functionality of the internal cooling system, which is an advanced design feature of the installed modern high pressure steam turbines. Predicted 3D temperature distributions are compared to the actual measurements in order to verify and evaluate the design rules and the design philosophy applied. Conclusions are drawn regarding the performance of modern 3D design tools applied in the current design process and an outlook is given on the future potential of modern USC turbines.


Author(s):  
P. S. Neporozhnii ◽  
A. K. Kirsh

This paper describes the operating conditions which form the basis for determining the various types of feed pump units needed to equip the main power plant equipment in the U.S.S.R. The principles upon which the feed pump groups are selected, according to the type of equipment installed in different power plants, are considered. The system diagrams and design features of the feed pumps are presented, together with descriptions of how they are driven.


Author(s):  
S. Nogami ◽  
N. Ando ◽  
Y. Noguchi ◽  
K. Takahashi ◽  
T. Iwamiya ◽  
...  

Kyushu Electric Power Co., Inc., in constructing the recently completed first phase of the No. 1 Group of Shin-Oita Power Plant, Oita Prefecture (Kyushu Island), achieved further improvements over previous combined cycle plants, especially in the area of plant overall operation. It is composed of six combined cycle power units of the single-shaft, non-reheat type, based on Hitachi-GE MS7001E gas turbines, with a total output of 690 MW. Trial operations of the first unit began in May, 1990. Commercial operations of the first unit began in November 1990, and the last unit in June, 1991. The NO.1 Group incorporates two major advances over previous combined cycle plants. The first advance is a two-stage multiple nozzle dry-type low-NOx combustor. This combustor is a new development for keeping the level of NOx emissions below 62.5 ppm (16% O2 at gas turbine exhaust). The second advance is a new functionally and hierarchically distributed digital control system. By the control system, the plant was designed to bring the following notable features: 1 The individual units can be started and stopped automatically from the load dispatching directive center at the head office. 2 The plant can be operated for high efficiency with short starting and stopping time and large load variations. 3 Plant operating characteristics for emergency operations can be improved remarkably, for instance, load run back operations and fast cut back operation, etc. The results of trial operations have shown that the output per unit is about 0.5 to 4.2% higher, and the unit efficiency about 1.9 to 3.7% higher, than the planned values (all percentages relative), and tangible improvements and starting characteristics and load fluctuation are also satisfactory with the specified target values in the overall operation of the plant over that of previous combined cycle power plants. This plant has satisfactorily been operated since the start of commercial operation.


2021 ◽  
Vol 2 ◽  
pp. 21-25
Author(s):  
Vladimir Baranovsky ◽  
Maxim Lipatov

A wide range of efficient gas turbine engines has been developed at UEC NPO Saturn, Russia. Those engines can be successfully used for developing a marine steam-gas semi-closed cycle power plant to compensate peak loads on ships and vessels. This compact steam-gas power plant will demonstrate high efficiency which doesn’t change significantly depending on the load when compared to conventional steam-gas power plants. Also, this solution can possibly change the diesel engine prevalence among marine power plants.


2011 ◽  
Vol 278 ◽  
pp. 241-246 ◽  
Author(s):  
Magdalena Speicher ◽  
Andreas Klenk ◽  
Karl Maile ◽  
Eberhard Roos

High efficiency steam power plants are planned to operate at temperatures higher than 700°C and at a pressure of up to 350 bar. Due to this increase of the steam parameters, Ni-based alloys are required for constructing these plants. Materials testing - based on appropriate manufacturing and design criteria - is necessary in order to have a reliable data base of the relevant design characteristics. Additionally, a better understanding of the specific material behaviour under service like loading conditions for the evaluation of possible damage mechanisms is essential. This paper describes research on the behaviour of thick-walled power plant components made of Alloy 617 mod. and Alloy 263. Results from basic qualification programs with standard specimens including welded joints show the applicability of the materials. Results from creep rupture tests of base material and welded joints and microstructural investigations to obtain information on precipitations and dislocations in the virgin and aged conditions are presented. Information on the influence of chemical composition on creep rupture was obtained by analysing creep rupture data sets.


Author(s):  
Yoonhan Ahn ◽  
Jekyoung Lee ◽  
Seong Gu Kim ◽  
Jeong Ik Lee

The concern about the global climate change and the unstable supply of fossil fuels stimulate the research of the new energy source utilization and the efficient energy system design. As the interests on the future energy sources and renovating the conventional power plants grow, an efficient and widely applicable power conversion system is required to satisfy both requirements. S-CO2 cycle is considered as a promising candidate with the advantages of 1) relatively high efficiency in the modest temperature (450–750°C) region because of non-ideal properties near the critical point, 2) effectively reduced size of the total cycle with compact turbo-machines and heat exchangers, 3) potential for using in various applications with competitive efficiency and simple layout. The S-CO2 cycle was originally considered as an attractive candidate for the power conversion cycle of the next generation nuclear reactors. However, due to many benefits of the S-CO2 cycle, it is recently considered in other conventional and renewable energy system applications including fossil fuel power plant system, ship propulsion application, concentrated solar power system, fuel cell bottoming power cycle and so on. This paper will discuss about the design of S-CO2 cycle for the various energy system applications over different temperature range. Unlike a large size power plant which usually focuses more on maximizing the cycle efficiency, a small capacity energy system is seriously concerned about the total size of the cycle. In this manner, several preliminary S-CO2 cycle designs will be compared in terms of the efficiency and the physical size. Various layouts and components of S-CO2 cycle are compared to find the optimum cycle for each energy systems. The in-house codes developed by the KAIST research team are used to evaluate the various cycle performances and component preliminary designs. The obtained results will be compared to the conventional power conversion systems along with its implication to other existing designs.


2016 ◽  
Vol 1 (2) ◽  
pp. 156 ◽  
Author(s):  
Riezqa Andika ◽  
Valentina Valentina

As the most abundant and widely distributed fossil fuel, coal has become a key component of energy sources in worldwide. However, air pollutants from coal power plants contribute carbon dioxide emissions. Therefore, understanding how to taking care coal in industrial point of view is important. This paper focused on the feasibility study, including process design and simulation, of a coal to SNG power plant in Kalimantan in order to fulfill its electricity demand. In 2019, it is estimated that Kalimantan will need 2446 MW of electricity and it reaches 2518 MW in 2024. This study allows a thorough evaluation both in technology and commercial point of view. The data for the model is gathered through literature survey from government institution reports and academic papers. Aspen HYSYS is used for modelling the power plant consists of two blocks which are SNG production block and power block. The economic evaluation is vary depends on the pay-back period, capital and operational cost which are coal price, and electricity cost. The results of this study can be used as support tool for energy development plan as well as policy-making in Indonesia.


Sign in / Sign up

Export Citation Format

Share Document