scholarly journals Temperature Dependence of Lattice Thermal Conductivity for some I-III-VI2 Group Compound Semiconductors

2003 ◽  
Vol 7 (1) ◽  
pp. 7-15
Author(s):  
Mustafa S. Omer ◽  
◽  
Hameed M. Ahmad ◽  
Suran M. Mamand ◽  
◽  
...  
Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yifan Zhu ◽  
Yi Xia ◽  
Yancheng Wang ◽  
Ye Sheng ◽  
Jiong Yang ◽  
...  

Most crystalline materials follow the guidelines of T−1 temperature-dependent lattice thermal conductivity (κL) at elevated temperatures. Here, we observe a weak temperature dependence of κL in Mg3Sb2, T−0.48 from theory and T−0.57 from measurements, based on a comprehensive study combining ab initio molecular dynamics calculations and experimental measurements on single crystal Mg3Sb2. These results can be understood in terms of the so-called “phonon renormalization” effects due to the strong temperature dependence of the interatomic force constants (IFCs). The increasing temperature leads to the frequency upshifting for those low-frequency phonons dominating heat transport, and more importantly, the phonon-phonon interactions are weakened. In-depth analysis reveals that the phenomenon is closely related to the temperature-induced asymmetric movements of Mg atoms within MgSb4 tetrahedron. With increasing temperature, these Mg atoms tend to locate at the areas with relatively low force in the force profile, leading to reduced effective 3rd-order IFCs. The locally asymmetrical atomic movements at elevated temperatures can be further treated as an indicator of temperature-induced variations of IFCs and thus relatively strong phonon renormalization. The present work sheds light on the fundamental origins of anomalous temperature dependence of κL in thermoelectrics.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Katsushi Tanaka ◽  
Jung-Hwan Kim ◽  
Kyosuke Kishida ◽  
Haruyuki Inui

AbstractEinstein temperatures of guest atoms in Ba-Ge-(Al, In) type-III clathrate compounds have been estimated from the temperature dependence of the atomic displacement parameters determined by synchrotron X-ray powder diffractions. The lowest temperature is obtained for the vibration of Ba(2) atoms along the x-direction, which corresponds to the “rattling motion” of the guest atoms in the compounds. The temperature estimated is significantly low of about 50 K, which agrees with the fact that the compounds have small lattice thermal conductivities of about 0.6 W/mK. Though the lattice thermal conductivity of Ba24Ge88Al12 is larger than that of Ba24Ge88In12, the Einstein temperature of Ba24Ge88Al12 is slightly smaller than that of Ba24Ge88In12. This discrepancy can be explained by the consideration of higher Debye temperature of Ba24Ge88Al12 than that of Ba24Ge88In12, that is, lattice thermal conductivity without “rattling motion” is larger for Ba24Ge88Al12 than that for Ba24Ge88In12.


2013 ◽  
Vol 1456 ◽  
Author(s):  
James D. Jeffers ◽  
Leonard Olona ◽  
Zhihua Cai ◽  
Khosrow Namjou ◽  
Patrick J. McCann

ABSTRACTThe temperature dependence of cross-plane lattice thermal conductivity for thin film IV-VI semiconductors grown by molecular beam epitaxy was measured. Samples consisting of PbSe/PbSrSe multiple quantum wells (MQWs) on PbSe/PbSnSe superlattices (SLs) were grown with variations in SL layer thickness and the number of SL pairs. Localized lattice temperatures within the MQW layers were extracted from analysis of continuous wave photoluminescence (PL) emission spectra at heat sink temperatures between 100 K and 250 K. These data, finite element analysis, and electrical characterization were used to determine cross-plane lattice thermal conductivity of two different SL materials. A SL material with three different PbSe/PbSnSe thicknesses (1.2/1.2, 1.8/1.8, and 2.4/2.4 nm) exhibited a fairly constant lattice thermal conductivity from 1.2 to 1.3 W/mK as the sample was cooled from 250 K to 100 K. Another SL material with five different PbSe/PbSnSe thicknesses (0.5/0.5, 1.0/1.0, 1.6/1.6, 2.1/2.1, and 2.6/2.6 nm) exhibited very low lattice thermal conductivities from 0.46 to 0.47 W/mK 250 K to 100 K. These results are consistent with reflection of low energy heat transporting acoustic phonons within the SL material.


2020 ◽  
Vol 10 (5) ◽  
pp. 602-609
Author(s):  
Adil H. Awad

Introduction: A new approach for expressing the lattice thermal conductivity of diatomic nanoscale materials is developed. Methods: The lattice thermal conductivity of two samples of GaAs nanobeam at 4-100K is calculated on the basis of monatomic dispersion relation. Phonons are scattered by nanobeam boundaries, point defects and other phonons via normal and Umklapp processes. Methods: A comparative study of the results of the present analysis and those obtained using Callaway formula is performed. We clearly demonstrate the importance of the utilised scattering mechanisms in lattice thermal conductivity by addressing the separate role of the phonon scattering relaxation rate. The formulas derived from the correction term are also presented, and their difference from Callaway model is evident. Furthermore their percentage contribution is sufficiently small to be neglected in calculating lattice thermal conductivity. Conclusion: Our model is successfully used to correlate the predicted lattice thermal conductivity with that of the experimental observation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aastha Vasdev ◽  
Moinak Dutta ◽  
Shivam Mishra ◽  
Veerpal Kaur ◽  
Harleen Kaur ◽  
...  

AbstractA remarkable decrease in the lattice thermal conductivity and enhancement of thermoelectric figure of merit were recently observed in rock-salt cubic SnTe, when doped with germanium (Ge). Primarily, based on theoretical analysis, the decrease in lattice thermal conductivity was attributed to local ferroelectric fluctuations induced softening of the optical phonons which may strongly scatter the heat carrying acoustic phonons. Although the previous structural analysis indicated that the local ferroelectric transition temperature would be near room temperature in $${\text {Sn}}_{0.7}{\text {Ge}}_{0.3}{\text {Te}}$$ Sn 0.7 Ge 0.3 Te , a direct evidence of local ferroelectricity remained elusive. Here we report a direct evidence of local nanoscale ferroelectric domains and their switching in $${\text {Sn}}_{0.7}{\text {Ge}}_{0.3}{\text {Te}}$$ Sn 0.7 Ge 0.3 Te using piezoeresponse force microscopy(PFM) and switching spectroscopy over a range of temperatures near the room temperature. From temperature dependent (250–300 K) synchrotron X-ray pair distribution function (PDF) analysis, we show the presence of local off-centering distortion of Ge along the rhombohedral direction in global cubic $${\text {Sn}}_{0.7}{\text {Ge}}_{0.3}{\text {Te}}$$ Sn 0.7 Ge 0.3 Te . The length scale of the $${\text {Ge}}^{2+}$$ Ge 2 + off-centering is 0.25–0.10 Å near the room temperatures (250–300 K). This local emphatic behaviour of cation is the cause for the observed local ferroelectric instability, thereby low lattice thermal conductivity in $${\text {Sn}}_{0.7}{\text {Ge}}_{0.3}{\text {Te}}$$ Sn 0.7 Ge 0.3 Te .


Sign in / Sign up

Export Citation Format

Share Document