EFFECT OF FOUR LEVELS OF WATER APPLICATION ON GRAPE COMPOSITION AND MIDDAY STEM WATER POTENTIAL OF VITIS VINIFERA L. CV. CABERNET SAUVIGNON

2004 ◽  
pp. 491-497 ◽  
Author(s):  
S. Ortega-Farías ◽  
M. Duarte ◽  
A. Acevedo ◽  
Y. Moreno ◽  
F. Córdova
Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1949
Author(s):  
Eleonora Cataldo ◽  
Linda Salvi ◽  
Sofia Sbraci ◽  
Paolo Storchi ◽  
Giovan Battista Mattii

Soil management in vineyards is of fundamental importance not only for the productivity and quality of grapes, both in biological and conventional management, but also for greater sustainability of the production. Conservative soil management techniques play an important role, compared to conventional tillage, in order to preserve biodiversity, to save soil fertility, and to keep vegetative-productive balance. Thus, it is necessary to evaluate long-term adaptation strategies to create a balance between the vine and the surrounding environment. This work sought to assess the effects of following different management practices on Vitis vinifera L. cv. Cabernet Sauvignon during 2017 and 2018 seasons: soil tillage (T), temporary cover cropping over all inter-rows (C), and mulching with plant residues every other row (M). The main physiological parameters of vines (leaf gas exchange, stem water potential, chlorophyll fluorescence, and indirect chlorophyll content) as well as qualitative and quantitative grape parameters (technological and phenolic analyses) were measured. Significant differences in gas exchanges related to the different season and inter-row management were observed. C showed more negative values of water potential, due to the grass–vine competition, especially when water availability was lower. The competition exerted by C led to differences in fruit setting with impact on yield; therefrom, significant differences also in sugar and anthocyanic content were observed.


2002 ◽  
Vol 127 (3) ◽  
pp. 448-454 ◽  
Author(s):  
L.E. Williams ◽  
F.J. Araujo

A study was conducted to compare three measurements of determining water status of grapevines (Vitis vinifera L.) in the field. Predawn leaf water potential (ΨPD), midday leaf water potential (Ψl), and midday stem water potential (Ψstem) were measured on `Chardonnay' and `Cabernet Sauvignon' grapevines grown in Napa Valley, California late in the 1999 growing season. Both cultivars had been irrigated weekly at various fractions (0, 0.5, and 1.0 for `Chardonnay' and 0, 0.5, 0.75, and 1.5 for `Cabernet') of estimated vineyard evapotranspiration (ETc) from approximately anthesis up to the dates of measurements. Predawn water potential measurements were taken beginning at 0330 hr and completed before sunrise. Midday Ψl and Ψstem measurements were taken only between 1230 and 1330 hr. In addition, net CO2 assimilation rates (A) and stomatal conductance to water vapor (gs) were also measured at midday. Soil water content (SWC) was measured in the `Chardonnay' vineyard using a neutron probe. Values obtained for ΨPD, Ψl, and Ψstem in this study ranged from about -0.05 to -0.8, -0.7 to -1.8, and -0.5 to -1.6 MPa, respectively. All three measurements of vine water status were highly correlated with one another. Linear regression analysis of Ψl and Ψstem versus ΨPD resulted in r2 values of 0.88 and 0.85, respectively. A similar analysis of Ψl as a function of Ψstem resulted in an r2 of 0.92. In the `Chardonnay' vineyard, all three methods of estimating vine water status were significantly (P < 0.01) correlated with SWC and applied amounts of water. Lastly, ΨPD, Ψl, and Ψstem were all linearly correlated with measurements of A and gs at midday. Under the conditions of this study, ΨPD, Ψl, and Ψstem represent equally viable methods of assessing the water status of these grapevines. They were all correlated similarly with the amount of water in the soil profile and leaf gas exchange as well as with one another.


2012 ◽  
Vol 39 (12) ◽  
pp. 1019 ◽  
Author(s):  
V. Zufferey ◽  
D. R. Smart

We examined stomatal behaviour of a grapevine cultivar (Vitis vinifera L. cv. Syrah) following partial root removal under field conditions during progressively developing water deficits. Partial root removal led to an increase in hydraulic resistances along the soil-to-leaf pathway and leaf wilting symptoms appeared in the root-pruned plants immediately following root removal. Leaves recovered from wilting shortly thereafter, but hydraulic resistances were sustained. In comparison with the non-root pruned vines, leaves of root-pruned vines showed an immediate decrease in both pre-dawn (ψPD) and midday (ψleaf) leaf water potential. The decline in ψPD was unexpected in as much as soil moisture was not altered and it has been shown that axial water transport readily occurs in woody perennials. Only ~30% of the functional root system was removed, thus leaving the system mainly intact for water redistribution. Stem water potential (ψStem) and leaf gas exchanges of CO2 (A) and H2O (E) also declined immediately following root pruning. The lowering of ψPD, ψleaf, ψStem, A and E was sustained during the entire growing season and was not dependent on irrigation during that time. This, and a close relationship between stomatal conductance (gs) and leaf-specific hydraulic conductance (Kplant), indicated that the stomatal response was linked to plant hydraulics. Stomatal closure was observed only in the root-restricted plants and at times of very high evaporative demand (VPD). In accordance with the Ball-Berry stomatal control model proposed by Ball et al. (1987), the stomatal sensitivity factor was also lower in the root-restricted plants than in intact plants as soil water availability decreased. Although ψPD, ψStem and ψLeaf changed modestly and gradually following root removal, gs changed dramatically and abruptly following removal. These results suggest the involvement of stomatal restricting signals being propagated following removal of roots.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1070
Author(s):  
Elisabetta Nicolosi ◽  
Valeria Iovino ◽  
Gaetano Distefano ◽  
Mario Di Guardo ◽  
Stefano La Malfa ◽  
...  

The aim of this study was to analyze the mid-term influence of minimum tillage (MT) combined with early leaf removal (ELR) on the performance of the black grapevine variety Nerello Mascalese (Vitis vinifera L.). The research was carried out from 2015 to 2018 in a vineyard located in the Mount Etna area, East Sicily, Southern Italy. An average of about 8000 cm2 of leaves were removed from the ELR vines, corresponding to a canopy defoliation of 44% in 2017 and 30% in 2018. As for the stem water potential of both primary and lateral leaves, ELR-MT treatment showed the best performance (up to −0.4 MPa) among the four combinations. In 2017, no differences in yield/vine were found among treatments, whereas in 2018 the yield was significantly lower in ELR treatments. Among the different treatments performed, the ELR-MT showed the best results both in terms of physiological plant parameters (water status and photosynthetic activity) and fruit quality (higher concentration of sugars and total anthocyanins and polyphenols). ELR-MT treatment is also associated with a lower incidence of tillage operations from four to only one per year (−60–70 h/ha). In contrast to what was observed in the first 3 years of application (i.e., from 2015 to 2017), yield was heavily penalized during the fourth year of application (2018), probably due to the excessive depletion of nutritional reserves, the reduction of bud fertility and the unfavorable meteorological condition. For these reasons, the ELR-MT combination might require an interruption every 2–3 years of application.


Agrometeoros ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Cristina Pandolfo ◽  
Marilene De Lima ◽  
Angelo Mendes Massignam ◽  
Aparecido Lima da Silva ◽  
Luiz Albano Hammes

Os sistemas atmosféricos exercem um papel significativo no clima de uma região e poucos trabalhos determinaram os impactos dos sistemas atmosféricos no de­senvolvimento e na produção de videira. Os objetivos deste trabalho foram deter­minar a frequência de ocorrência dos sistemas atmosféricos durante o período da maturação à colheita da videira (Vitis vinifera L.) var. Cabernet Sauvignon para as duas regiões produtoras de Santa Catarina em diferentes safras e determinar a as­sociação entre a ocorrência dos sistemas atmosféricos e as regiões produtoras e as safras. Os sistemas atmosféricos foram identificados durante as safras de 2005/2006 à 2008/2009. Os municípios de Água Doce e Campos Novos foram escolhidos para re­presentar a região produtora 1 e os municípios de Bom Retiro e São Joaquim para re­presentar a região produtora 2. As frequências de ocorrências dos sistemas atmosfé­ricos durante o período da maturação à colheita de videira são muito semelhantes entre as regiões, somente houve diferença na frequência de ocorrência do sistema jato subtropical entre regiões. Houve uma diferença significativa da ocorrência da frequência dos sistemas atmosféricos entre safras.


2021 ◽  
Vol 13 (4) ◽  
pp. 1759
Author(s):  
Said A. Hamido ◽  
Kelly T. Morgan

The availability and proper irrigation scheduling of water are some of the most significant limitations on citrus production in Florida. The proper volume of citrus water demand is vital in evaluating sustainable irrigation approaches. The current study aims to determine the amount of irrigation required to grow citrus trees at higher planting densities without detrimental impacts on trees’ water relation parameters. The study was conducted between November 2017 and September 2020 on young sweet orange (Citrus sinensis) trees budded on the ‘US-897’ (Cleopatra mandarin x Flying Dragon trifoliate orange) citrus rootstock transplanted in sandy soil at the Southwest Florida Research and Education Center (SWFREC) demonstration grove, near Immokalee, Florida. The experiment contained six planting densities, including 447, 598, and 745 trees per ha replicated four times, and 512, 717, and 897 trees per ha replicated six times. Each density treatment was irrigated at 62% or 100% during the first 15 months between 2017 and 2019 or one of the four irrigation rates (26.5, 40.5, 53, or 81%) based on the calculated crop water supplied (ETc) during the last 17 months of 2019–2020. Tree water relations, including soil moisture, stem water potential, and water supplied, were collected periodically. In addition, soil salinity was determined. During the first year (2018), a higher irrigation rate (100% ETc) represented higher soil water contents; however, the soil water content for the lower irrigation rate (62% ETc) did not represent biological stress. One emitter per tree regardless of planting density supported stem water potential (Ψstem) values between −0.80 and −0.79 MPa for lower and full irrigation rates, respectively. However, when treatments were adjusted from April 2019 through September 2020, the results substantially changed. The higher irrigation rate (81% ETc) represented higher soil water contents during the remainder of the study, the lower irrigation rate (26.5% ETc) represents biological stress as a result of stem water potential (Ψstem) values between −1.05 and −0.91 MPa for lower and higher irrigation rates, respectively. Besides this, increasing the irrigation rate from 26.5% to 81%ETc decreased the soil salinity by 33%. Although increasing the planting density from 717 to 897 trees per hectare reduced the water supplied on average by 37% when one irrigation emitter was used to irrigate two trees instead of one, applying an 81% ETc irrigation rate in citrus is more efficient and could be managed in commercial groves.


Sign in / Sign up

Export Citation Format

Share Document