HORMONAL REGULATION OF THE REGULAR AND 'OFF SEASON' FLORAL INDUCTION PROCESS OF LONGAN (DIMOCARPUS LONGAN) TREES

2010 ◽  
pp. 215-224 ◽  
Author(s):  
K.F. Bangerth ◽  
P. Potchanasin ◽  
K. Sringarm
Author(s):  
Zhen Tian ◽  
Xiaodong Qin ◽  
Hui Wang ◽  
Ji Li ◽  
Jinfeng Chen

AbstractThe CONSTANS-like (COL) gene family is one of the plant-specific transcription factor families that play important roles in plant growth and development. However, the knowledge of COLs related in cucumber is limited, and their biological functions, especially in the photoperiod-dependent flowering process, are still unclear. In this study, twelve CsaCOL genes were identified in the cucumber genome. Phylogenetic and conserved motif analyses provided insights into the evolutionary relationship between the CsaCOLs. Further, the comparative genome analysis revealed that COL genes are conserved in different plant species, especially collinearity gene pairs related to CsaCOL5. Ten kinds of cis-acting elements were vividly detected in CsaCOLs promoter regions, including five light-responsive elements, which echo the diurnal rhythm expression patterns of seven CsaCOL genes under SD and LD photoperiod regimes. Combined with the expression data of developmental stage, three CsaCOL genes are involved in the flowering network and play pivotal roles for the floral induction process. Our results provide useful information for further elucidating the structural characteristics, expression patterns, and biological functions of COL family genes in many plants


2005 ◽  
Vol 130 (6) ◽  
pp. 793-798
Author(s):  
Miki Nakata ◽  
Nobuo Sugiyama ◽  
Tanachai Pankasemsuk

The structure and developmental patterns of inflorescence of longan (Dimocarpus longan Lour.) were studied microscopically and by the naked eye. In inflorescence of longan, compound dichasia are arranged on three to four orders of monopodial axes without the formation of terminal flowers, indicating that longan inflorescence is pleiothyrse; cymose partial inflorescences are arranged on more than two monopodial axes. Most of the monopodial axes had differentiated by the end of November just before the cool season. The first sign of inflorescence formation was the appearance of bract primordia at apical meristems of the preformed monopodial axes, with lateral axes preceding the main axes. Dichasia were formed in the axils of bract primordia, and the formation of bracts and dichasia continued. Bract appearance can be detected by the naked eye 1 week after microscopically detected bract appearance. Shoots with intermediate characteristics between the inflorescence and the vegetative shoots were formed; dichasia were formed on the lateral axes, but not on the main axes in intermediate shoots. These results suggest that apical meristems on the terminal shoot produce monopodial axes, together with foliage leaf primordia, before floral induction, but produce bract primordia and compound dichasia, which are composed of sympodial axes, after floral induction.


2009 ◽  
Vol 122 (2) ◽  
pp. 312-317 ◽  
Author(s):  
P. Potchanasin ◽  
K. Sringarm ◽  
D. Naphrom ◽  
K.F. Bangerth

2021 ◽  
Vol 12 ◽  
Author(s):  
Shilian Huang ◽  
Dongmei Han ◽  
Jing Wang ◽  
Dongliang Guo ◽  
Jianguang Li

Longan (Dimocarpus longan L.) is one of the most important tropical and subtropical fruits in the world. Longan fruit has high nutritional and medical value, and is regarded as a treasure among fruits. Since it was first reported that potassium chlorate (KClO3) could be successfully applied to promote flowering in longan, this compound has been widely used in the production of on-season and off-season longan fruits. KClO3 has thus played a great role in promoting the development of the longan industry. In this review, we summarize the application methods, influencing factors, and physiological and molecular mechanisms associated with KClO3-mediated induction of longan flowering. It can be deduced that leaves may play a crucial role in the transport of and response to KClO3. Leaves supply carbon and nitrogen nutrition, and hormone and signaling molecules needed for the differentiation of apical buds. Moreover, cytokinins may be crucial for KClO3-mediated induction of longan flowering. More effort should be focused on studying the molecular mechanisms underlying this process. This will not only help us to better understand floral induction by KClO3 in longan but also enrich our understanding of flowering regulation mechanisms in woody plants.


2009 ◽  
Vol 122 (2) ◽  
pp. 295-300 ◽  
Author(s):  
K. Sringarm ◽  
P. Potchanasin ◽  
P. Sruamsiri ◽  
K.F. Bangerth

2013 ◽  
Vol 138 (3) ◽  
pp. 184-189 ◽  
Author(s):  
Eduardo J. Chica ◽  
L. Gene Albrigo

As in arabidopsis (Arabidopsis thaliana), putative citrus (Citrus) Flowering locus T (FT) homologs are strong promoters of flowering and apparently are key components of the molecular mechanism controlling floral induction in these species. An abundance of citrus FT gene transcripts during floral induction is consistent with the role of their products as floral-promoting signals. However, specific details about how the floral induction process is initiated and sustained remain largely unknown. We report changes in transcript abundance of a FT gene (CsFT) from sweet orange (Citrus sinensis) at the onset of floral induction by low temperatures and at different times of the day. Using a combination of field and growth room experiments, we determined that the abundance of CsFT transcripts increased within 1 day after initial exposure to cool floral-inductive temperatures, and that CsFT transcript abundance was higher in the afternoon than in the morning and evening. The presence of photoperiod cycles seemed to be required to sustain the increasing CsFT transcript abundance, because exposure to floral inductive conditions under continuous light or darkness did not increase the abundance of CsFT transcripts after 3 days. Our results suggest that the regulation of CsFT expression responds rapidly (overnight) to the onset of floral-inductive cool temperatures, is sensitive to changes in temperature, and requires alternation of light and dark cycles to sustain transcript accumulation during induction.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 114
Author(s):  
Yu-Jiao Ma ◽  
Pei-Ting Li ◽  
Lei-Ming Sun ◽  
Huan Zhou ◽  
Ren-Fang Zeng ◽  
...  

For floral induction in adult citrus, low temperature is one of the most important environmental factors. FLOWERING LOCUS C (FLC) plays a very important role in low-temperature-induced Arabidopsis flowering by repressed FLC expression under exposure to prolonged low-temperature conditions. However, little is known about the FLC regulation mechanism in perennial woody plants such as citrus. In this study, the functions of citrus FLC homolog (PtFLC) were investigated by ectopic expression in Arabidopsis. Transcription factor of homeodomain leucine zipper I (HD-ZIP I) as an upstream regulator of PtFLC was identified by yeast one-hybrid screen to regulate its transcription. The HD-ZIP I transcription factor was highly homologous to Arabidopsis ATHB13 and thus was named PtHB13. Ectopically expressed PtHB13 inhibited flowering in transgenic Arabidopsis. Furthermore, the expression of PtFLC and PtHB13 showed a seasonal change during the floral induction period and was also affected by low temperature. Thus, we propose that PtHB13 binds to PtFLC promoter to regulate its activity during the citrus floral induction process.


2016 ◽  
Vol 36 (3) ◽  
pp. 387-398 ◽  
Author(s):  
Leandro N. Faria ◽  
Antônio A. Soares In memoriam ◽  
Sérgio L. R. Donato ◽  
Marcelo R. dos Santos ◽  
Luciana G. Castro

ABSTRACT This study aimed to evaluate reduction strategies of irrigation for proper management of floral induction and production of 'Tommy Atkins' mangoes, in the semiarid region of the Bahia state, Brazil. Five treatments with reduced irrigation levels based on crop evapotranspiration (ETc) were applied in two development stages, FI - flowering and FII – fruiting. Water depths were T1 - 0% of ETc in FI and 100% in FII; T2 - 25% of ETc in FI and 100% in FII; T3 - 50% of ETc in FI and 100% in FII; T4 - 75% of ETc in FI and 100% in FII; and T5 - 100% of ETc in FI and FII. The treatments were arranged in a randomized complete block design with six replications. Photosynthesis and transpiration rates in phases FI and FII were larger at 8 am than at 2 pm, regardless of the strategies used. These strategies lead to smaller values of photosynthesis, transpiration and leaf water potential within flowering stage. Productive characteristics were not affected by irrigation level reduction for flower induction process, only for the cycles evaluated. Strategies with 0% of ETc in FI and 100% in FII or 25% of ETc in FI and 100% in FII are appropriate to flower induction in 'Tommy Atkins' mango.


Sign in / Sign up

Export Citation Format

Share Document