scholarly journals WATER TREATMENT BY AN INTEGRATED METHOD FOR OPERATION OF WATER BOILERS AND HEATING NETWORKS

2021 ◽  
Vol 10 (4) ◽  
pp. 50-59
Author(s):  
Larisa L. NEGODA ◽  
Svetlana A. MINKINA ◽  
Sergej Ye. ANGALYShEV ◽  
Vladislav Alekseevich CEJZER

The use of a complex fi lter for water treatment is proposed for the fi rst time. The complex fi lter includes two layers. The fi rst layer along the course of the water should be loading for mechanical cleaning, the second - for softening (ion exchange). Cleaning can be one- or two-stage. For research, water was used from three wells in the Samara region. In the course of the work, two stages of laboratory research were carried out, on the basis of which the best fi ltering load was determined. The calculation of the total and working exchange capacity has been made. A technical and economic comparison of cleaning methods was carried out. The results of the work performed were summed up, proposals were made for the rational use of installations and the prospects for the development of the work in the future were determined.

2018 ◽  
Vol 245 ◽  
pp. 12007
Author(s):  
Tatiana Germanova

This study was conducted with the aim of preliminary assessment of the total use of the working exchange capacity of cation-exchangers during ion-exchange filtration of surface waters. The chemical composition of natural waters in Russia depends on many factors, which affects the performance indicators during operation of water treatment equipment. Comparison of geochemical indicators of natural waters of the Ob River basin at specific locations of water withdrawal in the Ural Federal District of Russia was carried out. For several compositions of natural waters, the calculation of two-stage ion-exchange filtration in the water treatment scheme for heat and power plants has been carried out. The possibility of rational use of ion-exchange filtration at the first stage of water purification and low efficiency of the use of ion-exchange filtration at the second stage of filtration for these plants is shown.


2019 ◽  
Vol 79 ◽  
pp. 03003
Author(s):  
Guorui Tang ◽  
Kuan He ◽  
Deqing Liu

This paper introduces the structure and technical principle of the homogeneous membrane electrodialyzer, and describes that the homogeneous ion exchange membrane has excellent ion exchange capacity, low water loss rate, stable physical and chemical properties and effective removal of organic matter. The homogeneous membrane electrodialysis technology should be combined with other water treatment processes in practice to achieve better treatment results.


2020 ◽  
Vol 175 ◽  
pp. 12009
Author(s):  
Nikolai Serpokrylov ◽  
Alla Smolyanichenko ◽  
Vladimir Nelidin

Improving the quality of water treatment is accompanied by an increase in technology requirements. An important role in solving problems of technological ensuring the quality of treatment, among which a prominent place is occupied by filtration methods, biological, chemical and mechanical methods. Among the mentioned cleaning methods, mechanical cleaning methods and one of its varieties are widely used, a new model water purification by filtration using vibrationtechnology.


Author(s):  
Thounaojam Thomas Meetei ◽  
Yumnam Bijilaxmi Devi ◽  
Thounaojam Thorny Chanu

Ion exchange is the interchange of equivalent amount of ions from the solution with ions which are swarming in a boundary of charged surface in equilibrium. It is developed due to the presence of charge in the soil colloids or layer lattice clay minerals. The source of charge developed in the colloidal surface site of soil is mainly from two processes viz. isomorphous substitution and pH dependent charge. The charge can be positive or negative due to the exchange reaction in the layer lattice. The ion exchange capacity is the sum of cation exchange capacity (CEC) and anion exchange capacity (AEC). It depends on the types of soil and the amount of charge present in the layer lattice colloidal structure. With high negative charge in the lattice surface the CEC increases and with positive charge the AEC. Ions with higher charge have larger affinity to adsorbed more strongly than lower. Ion exchange capacity in soil has the ability to retained more nutrients in the form of cations or anions making available to plant for a long time which improved the fertility of soil. Leaching loss of different nutrients from the soil is reduced by holding different ions. Ion exchange processes have been widely used for heavy metal removal for waste water treatment and water purification because of its high remedial capacity, high removal efficiency and fast kinetic. Due to its applications in agriculture, environmental management, industries, waste water treatment in mining industries,  laboratory, nanotechnology, geotechnical and other soil reclamation processes it is considered as the second most important reaction in the globe after photosynthesis.


1992 ◽  
Vol 57 (9) ◽  
pp. 1905-1914
Author(s):  
Miroslav Bleha ◽  
Věra Šumberová

The equilibrium sorption of uni-univalent electrolytes (NaCl, KCl) in heterogeneous cation exchange membranes with various contents of the ion exchange component and in ion exchange membranes Ralex was investigated. Using experimental data which express the concentration dependence of equilibrium sorption, validity of the Donnan relation for the systems under investigation was tested and values of the Glueckauf inhomogeneity factor for Ralex membranes were determined. Determination of the equilibrium sorption allows the effect of the total content of internal water and of the ion-exchange capacity on the distribution coefficients of the electrolyte to be determined.


2021 ◽  
Vol 22 (3) ◽  
pp. 1415
Author(s):  
Veronika Sarapulova ◽  
Natalia Pismenskaya ◽  
Valentina Titorova ◽  
Mikhail Sharafan ◽  
Yaoming Wang ◽  
...  

The interplay between the ion exchange capacity, water content and concentration dependences of conductivity, diffusion permeability, and counterion transport numbers (counterion permselectivity) of CJMA-3, CJMA-6 and CJMA-7 (Hefei Chemjoy Polymer Materials Co. Ltd., China) anion-exchange membranes (AEMs) is analyzed using the application of the microheterogeneous model to experimental data. The structure–properties relationship for these membranes is examined when they are bathed by NaCl and Na2SO4 solutions. These results are compared with the characteristics of the well-studied homogenous Neosepta AMX (ASTOM Corporation, Japan) and heterogeneous AMH-PES (Mega a.s., Czech Republic) anion-exchange membranes. It is found that the CJMA-6 membrane has the highest counterion permselectivity (chlorides, sulfates) among the CJMAED series membranes, very close to that of the AMX membrane. The CJMA-3 membrane has the transport characteristics close to the AMH-PES membrane. The CJMA-7 membrane has the lowest exchange capacity and the highest volume fraction of the intergel spaces filled with an equilibrium electroneutral solution. These properties predetermine the lowest counterion transport number in CJMA-7 among other investigated AEMs, which nevertheless does not fall below 0.87 even in 1.0 eq L−1 solutions of NaCl or Na2SO4. One of the reasons for the decrease in the permselectivity of CJMAED membranes is the extended macropores, which are localized at the ion-exchange material/reinforcing cloth boundaries. In relatively concentrated solutions, the electric current prefers to pass through these well-conductive but nonselective macropores rather than the highly selective but low-conductive elements of the gel phase. It is shown that the counterion permselectivity of the CJMA-7 membrane can be significantly improved by coating its surface with a dense homogeneous ion-exchange film.


Sign in / Sign up

Export Citation Format

Share Document