scholarly journals Peculiarities of interaction of Physical vacuum and light waves

Author(s):  
G. Kononchook

Based on established representations, reliable facts and phenomena, the proposed model of the interaction of electromagnetic waves with a physical vacuum is studied. It is shown that from the assumption of a physical vacuum as a dielectric medium, the postulate of the constancy of speed of light follows in all inertial reference systems. The explanation of the partial capture of light by a moving medium (the effect of Fizeau), the effect of a gravitational lens, displacement of the spectrum of an electromagnetic wave in a gravitational field is given. The redshift of the spectrum of galaxies may have an alternative explanation not related to their expansion. As a result of this explanation there is no need to use the idea of dark energy.

1997 ◽  
Vol 161 ◽  
pp. 761-776 ◽  
Author(s):  
Claudio Maccone

AbstractSETI from space is currently envisaged in three ways: i) by large space antennas orbiting the Earth that could be used for both VLBI and SETI (VSOP and RadioAstron missions), ii) by a radiotelescope inside the Saha far side Moon crater and an Earth-link antenna on the Mare Smythii near side plain. Such SETIMOON mission would require no astronaut work since a Tether, deployed in Moon orbit until the two antennas landed softly, would also be the cable connecting them. Alternatively, a data relay satellite orbiting the Earth-Moon Lagrangian pointL2would avoid the Earthlink antenna, iii) by a large space antenna put at the foci of the Sun gravitational lens: 1) for electromagnetic waves, the minimal focal distance is 550 Astronomical Units (AU) or 14 times beyond Pluto. One could use the huge radio magnifications of sources aligned to the Sun and spacecraft; 2) for gravitational waves and neutrinos, the focus lies between 22.45 and 29.59 AU (Uranus and Neptune orbits), with a flight time of less than 30 years. Two new space missions, of SETI interest if ET’s use neutrinos for communications, are proposed.


2014 ◽  
Vol 6 (1) ◽  
pp. 1032-1035 ◽  
Author(s):  
Ramzi Suleiman

The research on quasi-luminal neutrinos has sparked several experimental studies for testing the "speed of light limit" hypothesis. Until today, the overall evidence favors the "null" hypothesis, stating that there is no significant difference between the observed velocities of light and neutrinos. Despite numerous theoretical models proposed to explain the neutrinos behavior, no attempt has been undertaken to predict the experimentally produced results. This paper presents a simple novel extension of Newton's mechanics to the domain of relativistic velocities. For a typical neutrino-velocity experiment, the proposed model is utilized to derive a general expression for . Comparison of the model's prediction with results of six neutrino-velocity experiments, conducted by five collaborations, reveals that the model predicts all the reported results with striking accuracy. Because in the proposed model, the direction of the neutrino flight matters, the model's impressive success in accounting for all the tested data, indicates a complete collapse of the Lorentz symmetry principle in situation involving quasi-luminal particles, moving in two opposite directions. This conclusion is support by previous findings, showing that an identical Sagnac effect to the one documented for radial motion, occurs also in linear motion.


Author(s):  
Frank S. Levin

Chapter 2 reviews answers to the question of what is light, starting with the ancient Greeks and ending in 1900 with the wave concept of Maxwell’s electrodynamics. For some ancient Greeks, light consisted of atoms emitted from surface of the object, whereas for others it was fire that either entered into or was emitted by eyes, although the latter possibility was effectively eliminated around the year 1000. Competing proposals well after then were that light is either a wave phenomenon or consists of particles, with Isaac Newton’s corpuscular (particle) theory prevailing by the end of the 1600s over the wave concept championed by Christiaan Huygens, who published the first estimate of the speed of light. In the early 1800s, Thomas Young’s two-slit experiment proved that light was a wave, a concept codified and firmly grounded through Maxwell’s theory of electromagnetic waves.


Author(s):  
Аnatoly М. Shutyi ◽  

Based on the general principle of the unity of the nature of interacting entities and the principle of the relativity of motion, as well as following the requirement of an indissoluble and conditioning connection of space and time, the model of a discrete space-time consisting of identical interacting particles is proposed as the most acceptable one. We consider the consequences of the discreteness of space, such as: the occurrence of time quanta, the limiting speed of signal propa­gation, and the constancy of this speed, regardless of the motion of the reference frame. Regularly performed acts of particles of space-time (PST) interaction en­sure the connectivity of space, set the quantum of time and the maximum speed – the speed of light. In the process of PST communication, their mixing occurs, which ensures the relativity of inertial motion, and can also underlie quantum uncertainty. In this case, elementary particles are spatial configurations of an excited “lattice” of PST, and particles with mass must contain loop struc­tures in their configuration. A new interpretation of quantum mechanics is pro­posed, according to which the wave function determines the probability of de­struction of a spatial configuration (representing a quantum object) in its corresponding region, which leads to the contraction of the entire structure to a given, detectable component. Particle entanglement is explained by the appear­ance of additional links between the PST – the appearance of a local coordinate along which the distance between entangled objects does not increase. It is shown that the movement of a body should lead to an asymmetry of the tension of the bonds between the PST – to the asymmetry of its effective gravity, the es­tablishment of which is one of the possibilities for experimental verification of the proposed model. It is shown that the constancy of the speed of light in a vac­uum and the appearance of relativistic effects are based on ensuring the connec­tivity of space-time, i.e. striving to prevent its rupture.


Author(s):  
Tony Yuan

The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed of light c. Gravitational waves are generated following a disturbance in the gravitational field; they affect the gravitational force on an object. Just as light waves are subject to the Doppler effect, so are gravitational waves. This article explores the following research questions concerning gravitational waves: What is the spatial distribution of gravitational waves? Can the speed of a gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field upon the object)? What is the speed of the gravitational field? Do gravitational waves caused by the revolution of the Sun affect planetary precession? Can we modify Newton’s gravitational equation through the influence of gravitational waves?


2021 ◽  
Vol 82 (4) ◽  
pp. 61-64
Author(s):  
Vasil Сhaban ◽  

Based on the proposed differential equations of the interaction of the electric signal with the gravitational field, the observed phenomena are known as the gravitational lens and the Shapiro effect are investigated. The deflection of a light ray in the field of the Sun is simulated. It is shown that a moving photon undergoes in the gravitational field not only a transverse action, which causes a curvature of the trajectory but also a longitudinal one, implementing the acceleration-braking processes. As a result, the instability of the speed of light in a vacuum was revealed.


2019 ◽  
Vol 224 ◽  
pp. 06010
Author(s):  
Maria Astafurova

The ideology and scheme of physical axiomatics are proposed, the initial postulates and axioms are formulated. The essential principles of axiomatics are based on scientific statements and concepts that reflect the fundamental properties of the physical world. One of the obtained outcomes is the statement: “In the physical world, all homogeneous quantities are commensurable, and every real physical property is limited by a certain , The analysis of the problem of incommensurability of radius and circumference leads to the conclusion about the existence of a fundamental property of the physical world, different from space and time. This property is manifested in the forms of electric charges, electric and magnetic fields, electromagnetic waves and fields. Given the nature of its manifestation, this property is called the “electromagnetic property”. The developed axiomatic system and the obtained consequences are the basis of the working model of the physical vacuum. On the basis of this model there have been derived the equations connecting parameters of basic interactions. The components of the internal energy of the physical vacuum are determined. One of these components determines the phenomenon of the Universe expansion. characteristic for this property, minimum nonzero value”. Homogeneous quantities are quantities of one and the same nature, relating to the manifestation of one and the same physical property.


MRS Bulletin ◽  
2001 ◽  
Vol 26 (8) ◽  
pp. 623-626 ◽  
Author(s):  
R.B. Wehrspohn ◽  
J. Schilling

In the last few years, photonic crystals have gained considerable interest due to their ability to “mold the flow of light.” Photonic crystals are physically based on Bragg reflections of electromagnetic waves. In simple terms, a one-dimensional (1D) photonic crystal is a periodic stack of thin dielectric films with two different refractive indices, n1 and n2. The two important geometrical parameters determining the wavelength of the photonic bandgap are the lattice constant, a = d1(n1) + d2(n2), and the ratio of d1 to a (where d1 is the thickness of the layer with refractive index n1, and d2 is the thickness of layer n2). For a simple quarter-wavelength stack, the center wavelength λ of the 1D photonic crystal would be simply λ = 2n1d1 + 2n2d2. In the case of 2D photonic crystals, the concept is extended to either airholes in a dielectric medium or dielectric rods in air. Therefore, ordered porous dielectric materials like porous silicon or porous alumina are intrinsically 2D photonic crystals.


Sign in / Sign up

Export Citation Format

Share Document