Half-bare positron in the inner gap of a pulsar

2017 ◽  
Vol 7 (1-2) ◽  
pp. 36-41 ◽  
Author(s):  
S. Trofymenko ◽  
V. M. Kontorovich

The pulsed radiation from the Crab Pulsar consists of the main pulse (MP) and inter pulse (IP), as well as of the extra pulse components appearing at certain frequencies. One of the mysteries of these data, found by Moffett and Hankins twenty years ago, is the shift of the IP at high radio frequencies compared to lower ones and return to its previous position in the higher-frequency optical and X-ray range. In previous paper we proposed the explanation of these mysterious changes with the frequency, applying the idea of the reflection of curvature radiation by relativistic positrons from the stellar surface. Presently we focus on the additional contribution of transition radiation, emitted when positron hits the surface, to the total pulse produced by the particle. It is shown that due to the 'half-bare' state of positron in the polar gap the considered contribution is significantly suppressed comparing to the one of reflected curvature radiation.

2017 ◽  
Vol 7 (1-2) ◽  
pp. 30-35 ◽  
Author(s):  
V. Kontorovich ◽  
S. Trofymenko

The pulsed radiation from the Crab pulsar consists of the main pulse (MP) and inter pulse (IP), as well as of the extra pulse components appearing at certain frequencies. It has been studied in many frequencies and contains unique information, which is not available for the majority of the pulsars. One of the mysteries of these data, found by Moffett and Hankins twenty years ago, is the shift of the IP at high radio frequencies compared to lower ones and return to its previous position in the more high-frequency optical and X-ray range. We propose the explanation of these mysterious changes with the frequency as a reflection of radiation by relativistic positrons from the stellar surface. The magnetic field of the pulsar in the pole must be inclined to the surface of the star and affects on the discussed processes.


2004 ◽  
Vol 218 ◽  
pp. 321-324
Author(s):  
J. Gil ◽  
George I. Melikidze

Extremely short and powerful subpulses were recently detected within the giant radio pulses from the Crab pulsar. We argue that these are consistent with beaming due to the curvature of field lines, and thus with coherent curvature radiation. We also demonstrate that the observed fluxes are consistent with the emission of charged relativistic solitons, generated by means of modulational instability of the Langmuir turbulence associated with sparking discharge of the pulsar's polar gap.


2017 ◽  
Vol 13 (S337) ◽  
pp. 309-310
Author(s):  
A. K. Basu ◽  
B. C. Joshi ◽  
D. Bhattacharya

AbstractCrab Pulsar (PSR B0531+21) is known to emit pulsed emission in all bands of the electromagnetic spectrum. It also emits giant radio pulses (GRPs) frequently, which are roughly a hundred to million times brighter than the normal pulses. We aim to study whether there is a significant X-ray enhancement correlated with the occurrence of GRPs, using simultaneous observations with the ASTROSAT, the Giant Meterwave Radio telescope (1300 MHz) and the Ooty Radio telescope (325 MHz). This required determination of fixed pipeline offsets between different instruments. We find the offset between ASTROSAT and GMRT to be −30.181 ± 0.095 ms and that between ASTROSAT and ORT to be −18.4 ± 0.2 ms. Our preliminary results with 1300 MHz data also show a break in pulse intensity distribution at ~ 33 Jy in the main pulse and ~ 28 Jy in the inter-pulse.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 570
Author(s):  
Olga Sánchez ◽  
Manuel Hernández-Vélez

ZnOTe compounds were grown by DC magnetron cosputtering from pure Tellurium (Te) and Zinc (Zn) cathodes in O2/Ar atmosphere. The applied power on the Zn target was constant equal to 100 W, while the one applied on the Te target took two values, i.e., 5 W and 10 W. Thus, two sample series were obtained in which the variable parameter was the distance from the Te targets to the substrate. Sample compositions were determined by Rutherford Backscattering Spectroscopy (RBS) experiments. Structural analysis was done using X-Ray diffraction (XRD) spectrometry and the growth of the hexagonal w-ZnO phase was identified in the XRD spectra. RBS results showed high bulk homogeneity of the samples forming ZnOTe alloys, with variable Te molar fraction (MF) ranging from 0.48–0.6% and from 1.9–3.1% for the sample series obtained at 5 W and 10 W, respectively. The results reflect great differences between the two sample series, particularly from the structural and optical point of view. These experiments point to the possibility of Te doping ZnO with the permanence of intrinsic defects, as well as the possibility of the formation of other Te solid phases when its content increases. The results and appreciable variations in the band gap transitions were detected from Photoluminescence (PL) measurements.


2000 ◽  
Vol 177 ◽  
pp. 699-702 ◽  
Author(s):  
E. V. Gotthelf ◽  
G. Vasisht

AbstractWe propose a simple explanation for the apparent dearth of radio pulsars associated with young supernova remnants (SNRs). Recent X-ray observations of young remnants have revealed slowly rotating (P∼ 10s) central pulsars with pulsed emission above 2 keV, lacking in detectable radio emission. Some of these objects apparently have enormous magnetic fields, evolving in a manner distinct from the Crab pulsar. We argue that these X-ray pulsars can account for a substantial fraction of the long sought after neutron stars in SNRs and that Crab-like pulsars are perhaps the rarer, but more highly visible example of these stellar embers. Magnetic field decay likely accounts for their high X-ray luminosity, which cannot be explained as rotational energy loss, as for the Crab-like pulsars. We suggest that the natal magnetic field strength of these objects control their subsequent evolution. There are currently almost a dozen slow X-ray pulsars associated with young SNRs. Remarkably, these objects, taken together, represent at least half of the confirmed pulsars in supernova remnants. This being the case, these pulsars must be the progenitors of a vast population of previously unrecognized neutron stars.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1362
Author(s):  
Joao Augusto Oshiro ◽  
Angelo Lusuardi ◽  
Elena M. Beamud ◽  
Leila Aparecida Chiavacci ◽  
M. Teresa Cuberes

Ureasil-Poly(ethylene oxide) (ureasil-PEO500) and ureasil-Poly(propylene oxide) (u-PPO400) films, unloaded and loaded with dexamethasone acetate (DMA), have been investigated by carrying out atomic force microscopy (AFM), ultrasonic force microscopy (UFM), contact-angle, and drug release experiments. In addition, X-ray diffraction, small angle X-ray scattering, and infrared spectroscopy have provided essential information to understand the films’ structural organization. Our results reveal that while in u-PEO500 DMA occupies sites near the ether oxygen and remains absent from the film surface, in u-PPO400 new crystalline phases are formed when DMA is loaded, which show up as ~30–100 nm in diameter rounded clusters aligned along a well-defined direction, presumably related to the one defined by the characteristic polymer ropes distinguished on the surface of the unloaded u-POP film; occasionally, larger needle-shaped DMA crystals are also observed. UFM reveals that in the unloaded u-PPO matrix the polymer ropes are made up of strands, which in turn consist of aligned ~180 nm in diameter stiffer rounded clusters possibly formed by siloxane-node aggregates; the new crystalline phases may grow in-between the strands when the drug is loaded. The results illustrate the potential of AFM-based procedures, in combination with additional physico-chemical techniques, to picture the nanostructural arrangements in polymer matrices intended for drug delivery.


1975 ◽  
Vol 68 ◽  
pp. 239-241
Author(s):  
John C. Brown ◽  
H. F. Van Beek

SummaryThe importance and difficulties of determining the height of hard X-ray sources in the solar atmosphere, in order to distinguish source models, have been discussed by Brown and McClymont (1974) and also in this Symposium (Brown, 1975; Datlowe, 1975). Theoretical predictions of this height, h, range between and 105 km above the photosphere for different models (Brown and McClymont, 1974; McClymont and Brown, 1974). Equally diverse values have been inferred from observations of synchronous chromospheric EUV bursts (Kane and Donnelly, 1971) on the one hand and from apparently behind-the-limb events (e.g. Datlowe, 1975) on the other.


2014 ◽  
Vol 69 (11-12) ◽  
pp. 1229-1236
Author(s):  
Matthias Wörsching ◽  
Constantin Hoch

Abstract Cesium hydroxide, CsOH, was for the first time characterised on the basis of single-crystal data. The structure is isotypic to the one of the room-temperature modification of NaOH and can be derived from the NaCl structure type thus allowing the comparison of all alkali metal hydroxide structures. Raman spectroscopic investigations show the hydroxide anion to behave almost as a free ion as in the gas phase. The X-ray investigations indicate possible H atom positions.


2011 ◽  
Vol 286 (41) ◽  
pp. 35699-35707 ◽  
Author(s):  
Attila Iliás ◽  
Károly Liliom ◽  
Brigitte Greiderer-Kleinlercher ◽  
Stephan Reitinger ◽  
Günter Lepperdinger

Hyaluronan (HA), a polymeric glycosaminoglycan ubiquitously present in higher animals, is hydrolyzed by hyaluronidases (HAases). Here, we used bee HAase as a model enzyme to study the HA-HAase interaction. Located in close proximity to the active center, a bulky surface loop, which appears to obstruct one end of the substrate binding groove, was found to be functionally involved in HA turnover. To better understand kinetic changes in substrate interaction, binding of high molecular weight HA to catalytically inactive HAase was monitored by means of quartz crystal microbalance technology. Replacement of the delimiting loop by a tetrapeptide interconnection increased the affinity for HA up to 100-fold, with a KD below 1 nm being the highest affinity among HA-binding proteins surveyed so far. The experimental data of HA-HAase interaction were further validated showing best fit to the theoretically proposed sequential two-site model. Besides the one, which had been shown previously in course of x-ray structure determination, a previously unrecognized binding site works in conjunction with an unbinding loop that facilitates liberation of hydrolyzed HA.


Sign in / Sign up

Export Citation Format

Share Document