scholarly journals Difference spectrophotometric method for the determination of Fluphenazine hydrochloride in tablets using peroxomonosulfate

2021 ◽  
Vol 9 (2) ◽  
pp. 64-71
Author(s):  
Mykola Blazheyevskiy ◽  
◽  
Valeriy Moroz ◽  
Olena Mozgova ◽  
◽  
...  

The oxidative derivatization method using potassium hydrogenperoxomonosulfate for the indirect spectrophotometric determination of Fluphenazine hydrochloride is presented. Potassium hydrogenperoxomonosulfate is introduced as a derivatizing agent for Fluphenazine hydrochloride, yielding the sulfoxide. This reaction product was successfully used for the spectrophotometric determination of the Fluphenazine hydrochloride. The UV spectroscopic detection of the sulfoxide proved to be a more robust and sensitive method. The elaborated method allowed the determination of Fluphenazine hydrochloride in the concentration range of 0.2-30 µg mL-1. The molar absorptivity at 349 nm is 5.6×103 (dm3cm-1mol-1). The limit of quantification, LOQ (10S) is 0.24 µg/mL. A new spectrophotometric technique was developed and the possibility of quantitative determination of Fluphenazine hydrochloride in tablets 5.0 mg was demonstrated. The present method is precise, accurate and excipients did not interfere. RSD for Fluphenazine Hydrochloride 5.0 mg tablets was 1.37 %.

2020 ◽  
Vol 8 (1) ◽  
pp. 117-124
Author(s):  
Olena Mozgova ◽  
Mykola Blazheyevskiy

The oxidative derivatization method using Diperoxyazelaic acid for the indirect spectrophotometric determination of Levomepromazine hydrochloride is presented. Diperoxyazelaic acid is introduced as a derivatizing agent for Levomepromazine, yielding the sulfoxides. This reaction product was successfully used for the spectrophotometric determination of the Levomepromazine hydrochloride. The UV spectroscopic detection of the sulfoxide proved to be a more robust and sensitive method. The elaborated method allowed the determination of Levomepromazine hydrochloride in the concentration range of 3-150 µg/mL. The limit of quantification, LOQ (10S) is 2.85 µg/mL. A new spectrophotometric technique was developed and the possibility of quantitative determination of Levomepromazine in Tisercin Solution for Injection 25mg/mL was demonstrated. The present method is precise, accurate and other excipients: anhydrous citric acid, monothioglycerol, sodium chloride did not interfere. RSD = 1.24 % (δ = –0.02 %).


2019 ◽  
Vol 7 (2) ◽  
pp. 96-103
Author(s):  
Mykola Blazheyevskiy ◽  
Myhailo Kucher ◽  
Oleh Shpychak

The oxidative derivatization method using diperoxyazelaic acid for the indirect spectrophotometric determination of Perphenazine dihydrochloride is presented. Diperoxyazelaic acid is introduced as a derivatizing agent for Perphenazine, yielding sulfoxides. This reaction product was successfully employed for the spectrophotometric determination of Perphenazine dihydrochloride. The UV spectroscopic detection of sulfoxide has been proven to be the more robust and selective. The method developed allowed determination of Perphenazine dihydrochloride in the concentration range of 1–40 µg/mL. The limits of quantification (LOQ=10S) is 3.3 µg·ml-1. A new spectrophotometric method has been developed, and the possibility of the quantitative determination of Perphenazine dihydrochloride in Perphenazine Tablets has been demonstrated. The present method is precise, accurate and other inactive excipients of the drug do not interfere. RSD = 2.00%; δ=( -µ) 100%/µ = – 0.85 %).


2011 ◽  
Vol 8 (4) ◽  
pp. 1528-1535 ◽  
Author(s):  
F. Nekouei ◽  
Sh. Nekouei

A simple, fast, reproducible and sensitive method for the flotation- spectrophotometric determination of Al3+is reported. The apparent molar absorptivity (ε) of the ion associate was determined to be 8.35×104L mol-1cm-1. The calibration curve was linear in the concentration range of 1.0-50 ng mL-1of Al3+with a correlation coefficient of 0.9997. The limit of detection (LOD) was 0.621 ng mL. The relative standard deviation (RSD) at 10 and 30 ng mL-1of aluminium were 1.580 and 2.410% (n=7) respectively. The method was applied for measuring the amount of aluminium in water samples.


2021 ◽  
Vol 2063 (1) ◽  
pp. 012008
Author(s):  
S A Zakaria ◽  
R A Zakaria ◽  
N S Othman

Abstract A selective and sensitive spectrophotometric method has been suggested for the quantitative assay of atenolol (ATNL) as pure and in its manufactural formulation(Tablet). The suggested procedure included oxidation of ATNL with an excess quantity of the oxidant N-bromosuccinimide (NBS), and then the excess of NBS was occupied in bleaching the color of methyl red dye(MRD), then measuring the absorbance of remaining MRD at 518 nm. The absorbance of the unbleached color of MRD corresponds to the ATNL concentration in the sample solution. Beer’s law was followed in the range of 0.1-2.0 μg.ml−1with molar absorptivity value equal to 8.8864x104 l.mol−1. cm−1. The suggested method was applied to the assay of ATNL in commercial tablets, with satisfactory results.


1993 ◽  
Vol 76 (3) ◽  
pp. 601-603 ◽  
Author(s):  
A A Al-Warthan ◽  
S S Al-Showiman ◽  
S A Al-Tamrah ◽  
A A BaOsman

Abstract The formation of a red complex between boron and the quinalizarin reagent was investigated and used as the basis for a simple and sensitive spectrophotometric method for boron in date cultivars. At 620 nm, the absorbance was linear (r= 0.999) over the 0.25-2.5 μg/mL concentration range. The molar absorptivity was found to be 2.23 x 103mol-1cm-1 and the relative standard deviation for 10 replicates (1.0 μg/mL) was 0.97%.


1993 ◽  
Vol 76 (3) ◽  
pp. 604-608 ◽  
Author(s):  
Sumon Chakravarty ◽  
Manas Kanti Deb ◽  
Rajendra Kumar Mishra

Abstract A simple, sensitive, and selective extractive spectrophotometric method for the determination of cadmium in trace quantities with N1-hydroxy-N1,N2- diphenylbenzamidine (HDPBA) and 4-(2-pyridylazo) naphthol (PAN) is described. The method is based on the extraction of cadmium with HDPBA into chloroform at pH 9.0 ± 0.2 and simultaneous spectrophotometric determination wiith PAN. The binary Cd(ll)-HDPBA complex extracted into chloroform has a molar absorptivity of 1.96 x 104L/ mol/cm at λmax 400 nm. The sensitivity of the yellow Cd(ll)-HDPBA complex was increased remarkably by the addition of PAN to the binary complex. With 6 different hydroxyamidines tested, the red-orange complex in chloroform exhibited maximum absorbance at 530-550 nm, with molar absorptivity values of 3.2-5.6 x 104L/mol/cm. The method adheres to Beer’s law up to 1.5 μg cadmium/mL organic phase. The detection limit of the method is 0.02 μg Cd/mL. Investigations of the effect of foreign ions revealed that the present method is free from matrix interference of most of the common ions (e.g., Fe(lll), Ni(ll), Cu(ll), Mn(ll), V(V), Co(ll), Al(lll), Cu(ll), Mg(ll), and Mo(VI)). The relative standard deviation for 10 repetitive analyses of the metal was 1.4%. The validity of the method was tested successfully with various environmental samples.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Theia'a N. Al-Sabha ◽  
Najwa M. Al-Karemy

A sensitive, simple, and accurate spectrophotometric method was developed for the quantitative determination of some primary aliphatic and aromatic amines, that is, ethylamine, 1,2-diaminopropane, aniline, p-aminophenol, and benzidine. The method is based on the interaction of these amines in aqueous medium with 7,7′,8,8′-tetracyanoquinodimethane (TCNQ) reagent in the presence of a buffer solution and surfactant (in the case of aromatic amines) to form charge-transfer complexes measurable at maximum wavelengths ranging between 323 and 511 nm. Beer’s law is obeyed over the concentration ranges of 0.025 and 3.0 μg/mL and the molar absorptivity is ranged between 8.977 × 103and 5.8034 × 104 L·mol−1·cm−1for these amines. The method was applied for the determination of benzidine in the river, sea, and tap waters. The TCNQ complexes with the previously mentioned amines were formed in the ratio of 1 : 1 amine : TCNQ, and their stability constants ranged between 8.78 × 104and 1.844 × 105 L·mol−1.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Oleksandr S. Tymoshuk ◽  
Orest S. Fedyshyn ◽  
Lesia V. Oleksiv ◽  
Petro V. Rydchuk ◽  
Vasyl S. Matiychuk

The simple, rapid spectrophotometric method for palladium(II) ions determination using a new analytical reagent is described. The interaction of Pd(II) ions with a reagent, of the class of azolidones, 4-(N′-(4-imino-2-oxo-thiazolidine-5-ylidene)-hydrazino)-benzoic acid, in water medium results in the formation of a complex. The Pd(II)-p-ITYBA complex shows maximum absorbance at a wavelength of 450 nm. The molar absorptivity is 4.30 × 103 L·mol−1·cm−1. The optimal pH for complex formation is 7.0. The developed method has a wide linearity range of 0.64–10.64 µg·mL−1 for Pd(II). The detection limit is 0.23 µg·mL−1. It was found that Co(II), Ni(II), Zn(II), Fe(III), Cu(II), Al(III), and many anions do not interfere with the Pd(II) determination. The proposed method was tested in the analysis of model solutions and successfully applied for the determination of palladium in catalyst. The obtained results show that this method can be used for serial determinations of palladium in various objects.


2020 ◽  
Vol 20 (5-6) ◽  
pp. 157-163
Author(s):  
Anna I. Zamaraeva ◽  
Natalya S. Bessonova ◽  
Tatyana A. Kobeleva ◽  
Alik I. Sichko

Actuality. Nowadays, the problems of effectiveness and accessibility of dermatoprotective therapy and prevention of dermatological diseases are urgent. The complex use of metronidazole in combination with drugs of other pharmacological groups is particularly relevant and promising. The dosage form consisting of 0.1 g of Itraconazole, 0.1 g of metronidazole and Tizol gel up to 10 g, termed by us Metroitraconazole, can be used in dermatology, ophthalmology and gynecology as a bactericidal and antifungal agent. The aim of the study is to develop the method for the quantitative spectrophotometric determination of metronidazole and itraconazole in a soft dosage form on a titanium-containing base. Materials and methods. For the analysis, we used substances, ethanol solutions of Metronidazole and Itraconazole, an ointment with the conditional name Metroitraconazole, containing 1.0% of the preparations in the Tizol gel. The study was carried out by spectrophotometry in the ultraviolet region, using spectrophotometer SF-2000 (Russia). Results. The study of the absorption spectra and statistical processing of the finding demontstrated that spectrophotometric determination of Itraconazole and metronidazole demanded the wavelengths of 262 and 312 nm, with a relative error of 1.52% and 1.67%, respectively. As a result of the analysis of the soft dosage form, it was determined that the content of metronidazole calculated with the use of Firordt method and a simplified system of equations ranged 0.0987-0.1057 g, and Itraconazole ranged 0.0925-0.1055 g. These data conformed the acceptance criteria. Conclusion. The conducted research allowed us to develop and propose a method for the quantitative determination of itraconazole and metronidazole in Metroitraconazole ointment by means of spectrophotometric method. It allowed us to determine the content of drugs in the dosage form with an error not exceeding the standard deviations.


2019 ◽  
Vol 10 (2) ◽  
pp. 1392-1396 ◽  
Author(s):  
Khalaf F Alsamarrai ◽  
Menaa Abdulsalam Al-Abbasi ◽  
Eman Thiab Alsamarrai

A new, sensitive, simple and cheap spectrophotometric method for the determination of Neomycin Sulphate (NEO) in pharmaceutical forms has been developed. The method is based on the reaction between NEO and NIN in basic medium. The maximum absorbance was at 574 nm. The conditions affecting the reaction were optimized. Under the optimal conditions, the calibration curve was linear over the range of 0.0002-0.0011 mol/L. The limit of detection and limit of quantification were 5.423×10-6 mol/L, and 1.643×10-5 mol/L, RSD% of seven replicate was 0.8217- 0.8321% and Rec% was between 99.2168-100.8857%. The proposed method was successfully applied to the determination of NEO tablets form.


Sign in / Sign up

Export Citation Format

Share Document