scholarly journals Spectrophotometric determination of neomycin sulphate in tablets form via reaction with ninhydrin reagent

2019 ◽  
Vol 10 (2) ◽  
pp. 1392-1396 ◽  
Author(s):  
Khalaf F Alsamarrai ◽  
Menaa Abdulsalam Al-Abbasi ◽  
Eman Thiab Alsamarrai

A new, sensitive, simple and cheap spectrophotometric method for the determination of Neomycin Sulphate (NEO) in pharmaceutical forms has been developed. The method is based on the reaction between NEO and NIN in basic medium. The maximum absorbance was at 574 nm. The conditions affecting the reaction were optimized. Under the optimal conditions, the calibration curve was linear over the range of 0.0002-0.0011 mol/L. The limit of detection and limit of quantification were 5.423×10-6 mol/L, and 1.643×10-5 mol/L, RSD% of seven replicate was 0.8217- 0.8321% and Rec% was between 99.2168-100.8857%. The proposed method was successfully applied to the determination of NEO tablets form.

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Neelkant Prasad ◽  
Roshan Issarani ◽  
Badri Prakash Nagori

A simple and sensitive ultraviolet spectrophotometric method for quantitative estimation of glipizide in presence of lipid turbidity is described to avoid false estimation due to diffraction by turbidity. UV detection was performed at 230 nm, 225 nm, and 235 nm, and the calibration curve was plotted between resultant of absorbance of [230 nm − (225 nm + 235 nm)/2] and concentration of analyte. The calibration curve was linear over the concentration range tested (1–20 μg/mL) with limit of detection of 0.27 μg/mL and limit of quantification of 0.82 μg/mL. Percent relative standard deviations and percent relative mean error, representing precision and accuracy, respectively, for clear as well as turbid solutions, were found to be within acceptable limits, that is, always less than 0.69 and 0.41, respectively, for clear solution and 0.65 and 0.47, respectively, for turbid solution. Conclusively, our method was successfully applied for the determination of glipizide in clear as well as turbid solutions, and it was found that the drug analyte in both types of solutions can be detected from the same calibration curve accurately and precisely and glipizide entrapped in the liposomes or in proliposomal matrix was not detected.


2017 ◽  
Vol 9 (5) ◽  
pp. 102
Author(s):  
Sukhjinder Kaur ◽  
Taranjit Kaur ◽  
Gurdeep Kaur ◽  
Shivani Verma

Objective: The aim of the present work was to develop a simple, rapid, accurate and economical UV-visible spectrophotometric method for the determination of hydroquinone (HQ) in its pure form, marketed formulation as well as in the prepared nanostructured lipid carrier (NLC) systems and to validate the developed method.Methods: HQ was estimated at UV maxima of 289.6 nm in pH 5.5 phosphate buffer using UV-Visible double beam spectrophotometer. Following the guidelines of the International Conference on Harmonization (ICH), the method was validated for various analytical parameters like linearity, precision, and accuracy robustness, ruggedness, limit of detection, quantification limit, and formulation analysis.Results: The obtained results of the analysis were validated statistically. Recovery studies were performed to confirm the accuracy of the proposed method. In the developed method, linearity over the concentration range of 5-40 μg/ml of HQ was observed with the correlation coefficient of 0.998 and found in good agreement with Beer Lambert’s law. The precision (intra-day and inter-day) of the method was found within official RCD limits (RSD<2%).Conclusion: The sensitivity of the method was assessed by determining the limit of detection and limit of quantification. It could be concluded from the results obtained that the purposed method for estimation of HQ in pure form, in the marketed ointment and in the prepared NLC-formulation was simple, rapid, accurate, precise and economical. It can be used successfully in the quality control of pharmaceutical formulations and for the routine laboratory analysis.


2009 ◽  
Vol 6 (s1) ◽  
pp. S496-S500
Author(s):  
K. S. Parikh ◽  
R. M. Patel ◽  
K. N. Patel

The reagent 2-hydroxy-4-n-butoxy-5-bromopropiophenone thiosemicarbazone (HBBrPT) has been used for the determination of Cd(II) by using spectrophotometric method. The reagent HBBrPT gave an intense yellow colour with Cd(II) solution in basic medium. The maximum absorbance was observed at 440 nm, in basic buffer solution (pH 10.00). The molor absorptivity and Sandell’s sensitivity of Cd(II)-HBBrPT complex were 4035 mol-1cm-1and 0.02765 μg cm-2respectively. The stability constant of 1:2 Cd(II)-HBBrPT complex was 8.46×106. The effect of various iron was also studied.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Mohsen Keyvanfard ◽  
Khadijeh Alizad ◽  
Razieh Shakeri

A new kinetic spectrophotometric method is described for the determination of ultratrace amounts of sodium cromoglycate (SCG). The method based on catalytic action of SCG on the oxidation of amaranth with periodate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of the amaranth at 518 nm, for the first 4 min from initiation of the reaction. Calibration curve was linear in the range of 4.0−36.0 ng mL−1SCG. The limit of detection is 2.7 ng mL−1SCG. The relative standard deviation (RSD) for ten replicate analyses of 12, 20, and 28 ng mL−1SCG was 0.40%, 0.32%, and 0.53%, respectively. The proposed method was used for the determination of SCG in biological samples.


2010 ◽  
Vol 9 (2) ◽  
pp. 254-260
Author(s):  
Choirul Amri ◽  
Dwi Siswanta ◽  
Mudasir Mudasir

A study of extraction-spectrophotometric method for the determination of trace nitrite as 4-(4-nitrobenzenazo)-1-aminonaphthalene complex using n-amylalcohol and chloroform as organic solvents has been done. Results of the study showed that extraction-spectrophotometric determination of nitrite using n-amylalcohol or chloroform was very sensitive and had low limit of detection. Extraction-spectrophotometric method of nitrite using n-amylalcohol gave range of linear concentration 0.000-0.054 mg/L NO2--N, detection limit of 2.09x10-4 mg/L NO2--N, and sensitivity of 34.514 ± 0.398 absorbance unit per mg/L of NO2--N. Meanwhile, extraction-spectrophotometric of nitrite using chloroform had range of linear concentration of 0.000-0.100 mg/L NO2--N, detection limit of 8.99x10-4 mg/L NO2--N, and sensitivity of 18.353 ± 0.456 absorbance unit per mg/L NO2--N.   Keywords: Nitrite Trace, 4-(4-Nitrobenzenazo)-1-Aminonaphthalene, Extraction-Spectrophotometry


2021 ◽  
Vol 9 (2) ◽  
pp. 64-71
Author(s):  
Mykola Blazheyevskiy ◽  
◽  
Valeriy Moroz ◽  
Olena Mozgova ◽  
◽  
...  

The oxidative derivatization method using potassium hydrogenperoxomonosulfate for the indirect spectrophotometric determination of Fluphenazine hydrochloride is presented. Potassium hydrogenperoxomonosulfate is introduced as a derivatizing agent for Fluphenazine hydrochloride, yielding the sulfoxide. This reaction product was successfully used for the spectrophotometric determination of the Fluphenazine hydrochloride. The UV spectroscopic detection of the sulfoxide proved to be a more robust and sensitive method. The elaborated method allowed the determination of Fluphenazine hydrochloride in the concentration range of 0.2-30 µg mL-1. The molar absorptivity at 349 nm is 5.6×103 (dm3cm-1mol-1). The limit of quantification, LOQ (10S) is 0.24 µg/mL. A new spectrophotometric technique was developed and the possibility of quantitative determination of Fluphenazine hydrochloride in tablets 5.0 mg was demonstrated. The present method is precise, accurate and excipients did not interfere. RSD for Fluphenazine Hydrochloride 5.0 mg tablets was 1.37 %.


2008 ◽  
Vol 33 (3) ◽  
pp. 7-12 ◽  
Author(s):  
M. A. Gotardo ◽  
L. S. Lima ◽  
R. Sequinel ◽  
J. L. Rufino ◽  
L. Pezza ◽  
...  

A simple, rapid and sensitive spectrophotometric method has been developed for the determination of methyldopa in pharmaceutical formulations. The method is based on the reaction between tetrachloro-p-benzoquinone (p-chloranil) and methyldopa, accelerated by hydrogen peroxide (H2O2), producing a violet-red compound (λmax = 535 nm) at ambient temperature (25.0 ± 0.2 ºC). Experimental design methodologies were used to optimize the measurement conditions. Beer's law is obeyed in a concentration range from 2.10 x 10-4 to 2.48 x 10-3 mol L-1 (r = 0.9997). The limit of detection was 7.55 x 10-6 mol L-1 and the limit of quantification was 2.52 x 10-5 mol L-1. The intraday precision and interday precision were studied for 10 replicate analyses of 1.59 x 10-3 mol L-1 methyldopa solution and the respective coefficients of variation were 0.7 and 1.1 %. The proposed method was successfully applied to the determination of methyldopa in commercial brands of pharmaceuticals. No interferences were observed from the common excipients in the formulations. The results obtained by the proposed method were favorably compared with those given by the Brazilian Pharmacopoeia procedure at 95 % confidence level.


2009 ◽  
Vol 74 (8-9) ◽  
pp. 977-984
Author(s):  
Sofija Rancic ◽  
Snezana Nikolic-Mandic

A new reaction was suggested and a new kinetic method was elaborated for determination of Bi(III) in solution, based on its catalytic effect on the oxidation of phenyl-fluorone (PF) by hydrogen peroxide in ammonia buffer. By application of spectrophotometric technique, a limit of quantification (LQ) of 128 ng cm-3 was reached, and the limit of detection (LD) of 37 ng cm-3 was obtained, where LQ was defined as the ratio signal: noise = 10:1 and LD was defined as signal 3:1 against the blank. The RSD value was found to be in the range 2.8-4.8 % for the investigated concentration range of Bi(III). The influence of some ions upon the reaction rate was tested. The method was confirmed by determining Bi(III) in a stomach ulcer drug ('Bicit HP', Hemofarm A.D.). The obtained results were compared to those obtained by AAS and good agreement of results was obtained.


2011 ◽  
Vol 8 (4) ◽  
pp. 1528-1535 ◽  
Author(s):  
F. Nekouei ◽  
Sh. Nekouei

A simple, fast, reproducible and sensitive method for the flotation- spectrophotometric determination of Al3+is reported. The apparent molar absorptivity (ε) of the ion associate was determined to be 8.35×104L mol-1cm-1. The calibration curve was linear in the concentration range of 1.0-50 ng mL-1of Al3+with a correlation coefficient of 0.9997. The limit of detection (LOD) was 0.621 ng mL. The relative standard deviation (RSD) at 10 and 30 ng mL-1of aluminium were 1.580 and 2.410% (n=7) respectively. The method was applied for measuring the amount of aluminium in water samples.


2019 ◽  
Vol 16 (3) ◽  
pp. 0595
Author(s):  
ALmashhadani Et al.

          Simple, cheap, sensitive, and accurate kinetic- spectrophotometric method has been developed for the determination of naringenin in pure and supplements formulations. The method is based on the formation of Prussian blue. The product dye exhibits a maximum absorbance at 707 nm. The calibration graph of naringenin was linear over the range 0.3 to 10 µg ml-1 for the fixed time method (at 15 min) with a correlation coefficient (r) and percentage linearity (r2%) were of 0.9995 and 99.90 %, respectively, while the limit of detection LOD was 0.041 µg ml-1. The method was successfully applied for the determination of naringenin in supplements with satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document