scholarly journals Tunable Sub Threshold Logic Design Through Adaptive Feedback Equalization

Author(s):  
Rajender Udutha , Et. al.

An Efficient tunable subthreshold logic circuit planned by utilizing adaptive feedback equalization circuit. This circuit utilized in the Ladner Fischer adder. This circuit utilized in a successive advanced logic circuit to moderate the cycle variety impacts and lessen the prevailing spillage energy part in the subthreshold area. Feedback equalizer circuit changes the switching edge of its inverter. It depends on the output of the flip-flop in the past cycle to lessen the charging and releasing season of the flip-flop's information capacitance. Besides, the more modest info capacitance of the feedback equalizer lessens the switching season of the last door in the combinational logic block. Likewise present point by point energy-performance models of the adaptive feedback equalizer circuit.  

2019 ◽  
Vol 887 ◽  
pp. 164-171
Author(s):  
Marija Marković ◽  
Ulrich Pont ◽  
Ardeshir Mahdavi

Energy performance calculations are stipulated by law in most European countries. Thereby, different calculation schemes have been developed in the past years in different countries. The physical processes in buildings were simplified in terms of normative calculation routines in most of these schemes. A major idea behind these simplifications was to enable different stakeholders (practitioners, engineers, and architects) to issue energy certificates without being simulation experts. Moreover, the simplifications needed to be described thoroughly in corresponding guidelines to ensure and facilitate the comparability of the energy performance of different buildings. However, neither of these objectives can be considered to be fully met. Regarding the former, the normative calculation procedures increased in complexity in the past years, so that the issuing of energy certificates requires not only the stakeholder’s expertise but also a comprehensive knowledge of the standards that form the calculation method. Regarding the latter, recent research efforts revealed that many guidelines do not fully cover every aspect of the calculation procedures and the assumptions regarding required input data. Thus, the comparability of energy certificates has to be strongly questioned, as a number of relevant calculation parameters are dependent on the interpretation of the corresponding issuer.Given this background, alternative approaches to building performance evaluation would be of interest. Previous approaches by different researchers suggested so called prescriptive indicators, which can be derived by basic building data (for instance, geometry and thermal quality of the building envelope components). This contribution is based on this concept. In the framework of a master thesis, a number of prescriptive indicators were considered. These indicators were derived for a set of sample buildings. In a parallel effort, energy certificates (encompassing Key Performance Indicators KPIs) were calculated for the sample buildings. It is clear that the prescriptive indicators cannot act as a 1:1 replacement for KPIs in terms of a numeric value. However, their usefulness can be expressed by the relation of the prescriptive indicator and the corresponding KPIs of a building. Thus, the results of the described calculation efforts were ranked. Subsequently, the lists of buildings ranked by the different indicators were compared in order to identify prescriptive indicators, which result in the same or at least similar ranking as the normative key performance indicators. Within this contribution, the suggested prescriptive indicators, the sample buildings, and the results of the analysis are presented and discussed.


2004 ◽  
Vol 219 ◽  
pp. 128-132
Author(s):  
S. V. Berdyugina ◽  
I. G. Usoskin

Using a new Sun-as-a-star approach we analyze sunspot group data for the past 120 years and reveal that sunspots are formed preferably in two persistent migrating active longitudes 180° apart. Their migration is determined by changes of the mean latitude of sunspots and the surface differential rotation. The two active regions periodically alternate being the dominant region with a period of about 3.7 years similar to the “flip-flop” phenomenon known in starspot activity. The fact that the Sun shows the same pattern of magnetic activity as highly active stars strengthens the solar paradigm for magnetic activity on cool stars.


2015 ◽  
Vol 23 (10) ◽  
pp. 2337-2341 ◽  
Author(s):  
Akshay Kumar Maan ◽  
Dinesh Sasi Kumar ◽  
Sherin Sugathan ◽  
Alex Pappachen James

2015 ◽  
Vol 54 (4S) ◽  
pp. 04DK03 ◽  
Author(s):  
Yasunori Takeda ◽  
Yudai Yoshimura ◽  
Faiz Adi Ezarudin Bin Adib ◽  
Daisuke Kumaki ◽  
Kenjiro Fukuda ◽  
...  

Author(s):  
Dr. Anup Kumar Biswas

Instead of an existing logical Technology, by using an emerging technology we will be able to make an electronic circuit with high speed, low cost, high concentration density, light in weight, reduced gate numbers and low power consumption. This technology is based on the linear threshold logic condition and electron-tunneling event. At the time of implementing a circuit, a multi-inputs but one-output based logic-node will be brought in our consideration. In this work, we have designed a 1-bit accumulator and then implemented it. To develop an accumulator, some small components like 2-input AND, 3-input AND, 3-input OR, 8-input OR, 9-input OR gate and above all a JK Flip-flop (for 1-bit) are to be collected and connected them in logical order to obtain the proper circuit. After verifying all their characteristics with the results obtained from the simulator, we have built a 1-bit accumulator. All the small components are provided in due places. They are analyzed, detected their threshold logic equations, shown their threshold logic gates (TLGs), tabulated their truth tables, drawn their input-output waveforms, given their respective circuits with exact parameter values. In the accumulator, there are nine control variables S1 through S9 in view of performing the operations (i) Addition, (ii) clear, (iii) complement, (iv) AND, (v) OR, (vi) XOR, (vii) Right-shift, (viii) Left-shift and (ix) increment with positive triggering clock pulses. Whether our present work’s circuits are faster or slower with respect to the similar circuits of CMOS based- and Single electron transistor (SET) based circuits are compared and observed that our TLG based circuits are faster than the CMOS and SET based circuits. The power consumed for tunneling event for a circuit is measured and sensed that it would remain in the range of 10meV to 250meV which is low. All the circuits we have presented in this work are of ‘generic multiple input threshold logic gate’ which is elaborately discussed.


1986 ◽  
Vol 69 (7) ◽  
pp. 84-90
Author(s):  
Yutaka Harada ◽  
Yuji Hatano ◽  
Kunio Yamashita ◽  
Ushio Kawabe

Sign in / Sign up

Export Citation Format

Share Document