An Effective Framework Using Region Merging and Learning Machine for Shadow Detection and Removal

Author(s):  
Mohan kumar Shilpa , Et. al.

Moving cast shadows of moving objects significantly degrade the performance of many high-level computer vision applications such as object tracking, object classification, behavior recognition and scene interpretation. Because they possess similar motion characteristics with their objects, moving cast shadow detection is still challenging. In this paper, the foreground is detected by background subtraction and the shadow is detected by combination of Mean-Shift and Region Merging Segmentation. Using Gabor method, we obtain the moving targets with texture features. According to the characteristics of shadow in HSV space and texture feature, the shadow is detected and removed to eliminate the shadow interference for the subsequent processing of moving targets. Finally, to guarantee the integrity of shadows and objects for further image processing, a simple post-processing procedure is designed to refine the results, which also drastically improves the accuracy of moving shadow detection. Extensive experiments on publicly common datasets that the performance of the proposed framework is superior to representative state-of-the-art methods.

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Minghu Wu ◽  
Rui Chen ◽  
Ying Tong

Shadow detection and removal in real scene images are a significant problem for target detection. This work proposes an improved shadow detection and removal algorithm for urban video surveillance. First, the foreground is detected by background subtraction and the shadow is detected by HSV color space. Using local variance and OTSU method, we obtain the moving targets with texture features. According to the characteristics of shadow in HSV space and texture feature, the shadow is detected and removed to eliminate the shadow interference for the subsequent processing of moving targets. Finally, we embed our algorithm into C/S framework based on the HTML5 web socket protocol. Both the experimental and actual operation results show that the proposed algorithm is efficient and robust in target detection and shadow detection and removal under different scenes.


2019 ◽  
Vol 9 (23) ◽  
pp. 5042 ◽  
Author(s):  
Yugen Yi ◽  
Jiangyan Dai ◽  
Chengduan Wang ◽  
Jinkui Hou ◽  
Huihui Zhang ◽  
...  

Moving cast shadows of moving objects significantly degrade the performance of many high-level computer vision applications such as object tracking, object classification, behavior recognition and scene interpretation. Because they possess similar motion characteristics with their objects, moving cast shadow detection is still challenging. In this paper, we present a novel moving cast-shadow detection framework based on the extreme learning machine (ELM) to efficiently distinguish shadow points from the foreground object. First, according to the physical model of shadows, pixel-level features of different channels in different color spaces and region-level features derived from the spatial correlation of neighboring pixels are extracted from the foreground. Second, an ELM-based classification model is developed by labelled shadow and un-shadow points, which is able to rapidly distinguish the points in the new input whether they belong to shadows or not. Finally, to guarantee the integrity of shadows and objects for further image processing, a simple post-processing procedure is designed to refine the results, which also drastically improves the accuracy of moving shadow detection. Extensive experiments on two publicly common datasets including 13 different scenes demonstrate that the performance of the proposed framework is superior to representative state-of-the-art methods.


Author(s):  
Kuo-Lung Lor ◽  
Chung-Ming Chen

The image segmentation of histopathological tissue images has always been a challenge due to the overlapping of tissue color distributions, the complexity of extracellular texture and the large image size. In this paper, we introduce a new region-merging algorithm, namely, the Regional Pattern Merging (RPM) for interactive color image segmentation and annotation, by efficiently retrieving and applying the user’s prior knowledge of stroke-based interaction. Low-level color/texture features of each region are used to compose a regional pattern adapted to differentiating a foreground object from the background scene. This iterative region-merging is based on a modified Region Adjacency Graph (RAG) model built from initial segmented results of the mean shift to speed up the merging process. The foreground region of interest (ROI) is segmented by the reduction of the background region and discrimination of uncertain regions. We then compare our method against state-of-the-art interactive image segmentation algorithms in both natural images and histological images. Taking into account the homogeneity of both color and texture, the resulting semi-supervised classification and interactive segmentation capture histological structures more completely than other intensity or color-based methods. Experimental results show that the merging of the RAG model runs in a linear time according to the number of graph edges, which is essentially faster than both traditional graph-based and region-based methods.


Author(s):  
JIFENG NING ◽  
LEI ZHANG ◽  
DAVID ZHANG ◽  
CHENGKE WU

A novel object tracking algorithm is presented in this paper by using the joint color-texture histogram to represent a target and then applying it to the mean shift framework. Apart from the conventional color histogram features, the texture features of the object are also extracted by using the local binary pattern (LBP) technique to represent the object. The major uniform LBP patterns are exploited to form a mask for joint color-texture feature selection. Compared with the traditional color histogram based algorithms that use the whole target region for tracking, the proposed algorithm extracts effectively the edge and corner features in the target region, which characterize better and represent more robustly the target. The experimental results validate that the proposed method improves greatly the tracking accuracy and efficiency with fewer mean shift iterations than standard mean shift tracking. It can robustly track the target under complex scenes, such as similar target and background appearance, on which the traditional color based schemes may fail to track.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Ying Wu ◽  
Jikun Liu

AbstractWith the rapid development of gymnastics technology, novel movements are also emerging. Due to the emergence of various complicated new movements, higher requirements are put forward for college gymnastics teaching. Therefore, it is necessary to combine the multimedia simulation technology to construct the human body rigid model and combine the image texture features to display the simulation image in texture form. In the study, GeBOD morphological database modeling was used to provide the data needed for the modeling of the whole-body human body of the joint and used for dynamics simulation. Simultaneously, in order to analyze and summarize the technical essentials of the innovative action, this experiment compared and analyzed the hem stage of the cross-headstand movement of the subject and the hem stage of the 180° movement. Research shows that the method proposed in this paper has certain practical effects.


2021 ◽  
Vol 13 (4) ◽  
pp. 699
Author(s):  
Tingting Zhou ◽  
Haoyang Fu ◽  
Chenglin Sun ◽  
Shenghan Wang

Due to the block of high-rise objects and the influence of the sun’s altitude and azimuth, shadows are inevitably formed in remote sensing images particularly in urban areas, which causes missing information in the shadow region. In this paper, we propose a new method for shadow detection and compensation through objected-based strategy. For shadow detection, the shadow was highlighted by an improved shadow index (ISI) combined color space with an NIR band, then ISI was reconstructed by the objects acquired from the mean-shift algorithm to weaken noise interference and improve integrity. Finally, threshold segmentation was applied to obtain the shadow mask. For shadow compensation, the objects from segmentation were treated as a minimum processing unit. The adjacent objects are likely to have the same ambient light intensity, based on which we put forward a shadow compensation method which always compensates shadow objects with their adjacent non-shadow objects. Furthermore, we presented a dynamic penumbra compensation method (DPCM) to define the penumbra scope and accurately remove the penumbra. Finally, the proposed methods were compared with the stated-of-art shadow indexes, shadow compensation method and penumbra compensation methods. The experiments show that the proposed method can accurately detect shadow from urban high-resolution remote sensing images with a complex background and can effectively compensate the information in the shadow region.


Author(s):  
Amrita Naik ◽  
Damodar Reddy Edla

Lung cancer is the most common cancer throughout the world and identification of malignant tumors at an early stage is needed for diagnosis and treatment of patient thus avoiding the progression to a later stage. In recent times, deep learning architectures such as CNN have shown promising results in effectively identifying malignant tumors in CT scans. In this paper, we combine the CNN features with texture features such as Haralick and Gray level run length matrix features to gather benefits of high level and spatial features extracted from the lung nodules to improve the accuracy of classification. These features are further classified using SVM classifier instead of softmax classifier in order to reduce the overfitting problem. Our model was validated on LUNA dataset and achieved an accuracy of 93.53%, sensitivity of 86.62%, the specificity of 96.55%, and positive predictive value of 94.02%.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Joshua Shur ◽  
Matthew Blackledge ◽  
James D’Arcy ◽  
David J. Collins ◽  
Maria Bali ◽  
...  

Abstract Purpose To evaluate robustness and repeatability of magnetic resonance imaging (MRI) texture features in water and tissue phantom test-retest study. Materials and methods Separate water and tissue phantoms were imaged twice with the same protocol in a test-retest experiment using a 1.5-T scanner. Protocols were acquired to favour signal-to-noise ratio and resolution. Forty-six features including first order statistics and second-order texture features were extracted, and repeatability was assessed by calculating the concordance correlation coefficient. Separately, base image noise and resolution were manipulated in an in silico experiment, and robustness of features was calculated by assessing percentage coefficient of variation and linear correlation of features with noise and resolution. These simulation data were compared with the acquired data. Features were classified by their degree (high, intermediate, or low) of robustness and repeatability. Results Eighty percent of the MRI features were repeatable (concordance correlation coefficient > 0.9) in the phantom test-retest experiment. The majority (approximately 90%) demonstrated a strong or intermediate correlation with image acquisition parameter, and 19/46 (41%) and 13/46 (28%) of features were highly robust to noise and resolution, respectively (coefficient of variation < 5%). Agreement between the acquired and simulation data varied, with the range of agreement within feature classes between 11 and 92%. Conclusion Most MRI features were repeatable in a phantom test-retest study. This phantom data may serve as a lower limit of feature MRI repeatability. Robustness of features varies with acquisition parameter, and appropriate features can be selected for clinical validation studies.


Sign in / Sign up

Export Citation Format

Share Document