scholarly journals Research On Decrease Of Outside Air Heat Pump Passive Evaporators Ice-Cover

Author(s):  
Andrievs Ilsters ◽  
Imants Ziemelis

Two years (2009-2010) experience of the experimental use of alternative energy sources in technological processes of agriculture is analyzed. Water was heated by an outside air heat pump with passive evaporators, and used for new born piglets resting place floor heating. Experimental data were obtained by the reckoning consumption of electric energy for the operation of the heat pump’s compressor and electric heater, and by a heat meter registering the consumed heat energy. The obtained data show that the outside air heat pump with passive evaporators is working successfully during summer months, when the coefficient of performance (COP) of the heat pump exceeds 3.5. When the outside temperature decreases under +10˚C, the heat pump evaporators become covered with hoarfrost and ice. The value of the COP and produced amount of heat energy reduce, and the electric heater often switches on. During the experimental research one of the heat pump evaporators was supplied with a ventilator, air flow from which was washing the surface of the evaporator’s plates. So the satisfactory operation of the heat pump was provided till December 10, 2009 and November 25, 2010.

Author(s):  
Z. Sirkо ◽  
◽  
V. Korenda ◽  
I. Vyshnyakov ◽  
O. Protasov ◽  
...  

Heat pump - a device for transferring thermal energy from a source of low potential thermal energy to a consumer with a higher temperature. The thermodynamic cycle of a heat pump is similar to a refrigerating machine. Depending on the principle of operation, heat pumps are divided into compression and absorption. The most commonly used compression heat pumps. In recent years, numerous publications on the use of heat pump technology in heating and hot water supply facilities of various spheres - from individual homes to residential neighborhoods have appeared in various media. The authors of the publication have many years of experience in joint scientific and technical cooperation with leading technical universities and industrial organizations in the field of development and practical use of heat pump technology. The authors analyze the possibilities of introducing heat pumps at enterprises and organizations of the State Reserve System of Ukraine. It has been shown that the amount of expenses in comparison with central heating or operation of gas and electric boilers of similar power is several times smaller. It is noted that the implementation of heat pumps is a promising direction in the use of alternative energy sources to meet the heating, ventilation and hot water supply needs of buildings. The payback period from the introduction of heat pumps at enterprises is 4-9 years, depending on the location of the object and the type of source of low-temperature heat. The article meets the requirements of the State Tax Code of Ukraine and can be recommended for publication.


Author(s):  
Yahya I. Sharaf-Eldeen

This work involves measurements, analyses, and evaluation of performance of air-source heat pump water heaters (HPWHs), and their impacts on electric utility loads. Two add-on, heat pumps (HPs) rated at 7000 BTU/h (2.051 kW) and 12,000 BTU/h (3.517 kW) were utilized. The HPs were retrofitted to two 50 gal (189.3 l) electric water heaters (EWHs) with their electric heating elements removed. A third standard EWH was used for comparison. The testing setups were fully instrumented for measurements of all pertinent parameters, including inlet and outlet water temperatures, inlet and outlet air temperatures of the HPs, temperature and humidity of the surrounding air, volume of water drawn out of the storage tanks, as well as the electric energy consumptions of the systems. Performance measures evaluated included the coefficient of performance, the energy factor (EF), and the first hour rating (FHR). The HPWH systems gave EFs ranging from 1.8 to 2.5 and corresponding energy savings (and reductions in utility peak loads) ranging from 49.0% to 63.0%, approximately. The values obtained in the summer months were, as expected, somewhat higher than those obtained in the winter ones. The average values of the EFs and energy savings (and reductions in utility peak loads) were about 2.1 and 56.0%, respectively. FHR results were much lower for the HPWHs compared with those for the standard EWH. These results show that HPWHs are much more efficient compared with standard EWHs. While the average value of the EF for the EWH was about 0.92, the HPWHs yielded EFs averaging more than 2.00, resulting in annual energy savings averaging more than 50%. The results also show that HPWHs are effective at reducing utility peak loads, in addition to providing substantial cost savings to consumers.


Author(s):  
Yahya I. Sharaf-Eldeen ◽  
Craig V. Muccio ◽  
Eric Gay

This work involves measurements, analyses, and evaluations of the performance of add-on, Heat Pump Water Heater (HPWH) systems in residential and small commercial applications. Two air-source Heat Pump (HP) systems rated at 7,000- and 12,000-BTU (2.051- and 3.517-kWh), were utilized in this work. The two HPs were retrofitted to two 50-gallon (189.3 liters) electric-resistance storage water-heaters with their electric heating elements removed. A third, standard electric water-heater (EWH), was used for comparison. The testing set-up was fully instrumented for measurements of pertinent parameters, including inlet and outlet water temperatures, inlet and outlet air temperatures of the HPs, temperature and humidity of the air in the surrounding space, volume of water draws out of the storage heater tanks, as well as electric energy consumptions of the systems. Several performance measures were used in this work, including the Coefficient of Performance (COP), which is a measure of the instantaneous energy output in comparison with the energy input; Energy Factor (EF), which is an average measure of the COP taken over extended periods of time; and the First Hour Rating (FHR), which is a measure of the maximum volume of hot water that a storage type water-heater can supply to a residence within an hour. The results obtained clearly indicate that, HPWH systems are much more efficient as compared to standard EWHs. While the average value of the EF for a standard EWH is close to 1.0, the HPWH systems yield EFs averaging more than 2.00, resulting in annual energy savings averaging more than 50%. The results also showed that, HPWH systems are effective at reducing utility peak demand-loads, in addition to providing substantial cost savings to consumers.


2018 ◽  
Vol 44 ◽  
pp. 00003
Author(s):  
Stanisław Anweiler ◽  
Maciej Masiukiewicz

The paper presents research related to the operation of an ground-source heat pump with a thermal output of 16.85 kW and an electrical power of 3.72 kW in various conditions, both from the mechanical and thermodynamic perspective. The publication contains the results of research on a selected heat pump model with an R410a refrigerant carried out in an accredited laboratory in the Czech Republic. Detailed analysis of the data in terms of changes in the COP coefficient for two heating water temperatures was carried out (35°C and 55°C) and in the range of outdoor air temperature from -10°C to 15°C every 1°C. The analysis was also carried out to determine the efficiency of the heat pump depending on the parameters of the heat source. Devices of this type, enabling effective use of environmental available thermal energy with low operating costs, meet increasingly stringent environmental protection requirements. Significant costs of heating buildings are one of the main reasons for the need to look for alternative energy sources. The heat resources contained in water, air and land are huge. Due to the fact that heat pump prices dropped significantly, and their efficiency has increased over the last few years, these devices are a real competition for conventional ways of supplying buildings with heat. Heat pumps do not require daily maintenance, are fully automated and have intuitive control. These features allow to use them as components in the system of a modern and intelligent household. It was shown that the SCOP of the tested device increased by 1% on average reaching SCOP = 4.71 for a typical external calculation temperature and for a low-temperature heating system (35°C).


1948 ◽  
Vol 158 (1) ◽  
pp. 22-29 ◽  
Author(s):  
J. A. Sumner

The paper provides the history and constructional details and working results of what is believed to be the first large heat pump used for building heating in Great Britain. This machine was constructed and installed as an experimental machine for heating a large block of municipal buildings in Norwich. A brief explanation indicating the principle upon which the heat pump works is given. Reference is also made to the differences between the reversed heat engine when working as a refrigerator and when working as a heat pump. In the latter case there is a deliberate increase in the final temperature T1, from approximately 85 deg. F. to temperatures which may be of the order of 150–200 deg. F. The unsuitability of the term “coefficient of performance”—normally used as a criterion of refrigerator performance—when used as a coefficient relating to the heat pump is pointed out; and the use of a new, alternative term is suggested. The results are shown of operating the Norwich Heat Pump for two winter heating seasons. When using an unsuitable compressor the heat delivered to the building was found to be 3·45 times greater than the equivalent heat (electric) energy required to operate the machine, averaged over the 1945–6 winter heating season. With a more efficient compressor, installed later in 1946, a still better performance is anticipated. The actual costs of heating the building, with coal-fired boilers and a heat pump respectively, are shown in the form of a table. Conclusions indicated are that the heat pump can show a financial saving, as compared with the use of coal-fired boilers, and that it is practicable to use the heat pump in Great Britain for building heating throughout normal English winters.


Author(s):  
Ludmila Shvets

In the conditions of the fuel crisis, an active search began for alternative energy sources in general, and alternative fuel in particular. Among the alternative sources, the use of biofuel for generating thermal and electric energy is currently the most relevant. Biological sources become the material for its production and, basically, these are wastes from agriculture, forestry and the woodworking industry. An important advantage of the use of bio-fuel is also an environmental factor, because its use significantly reduces environmental pollution, compared with the use of mineral fuels. According to their characteristics, fuel pellets compete with natural gas, but in environmental terms they are ahead of all other types of fuel to the same extent as in price terms. The relevance of the use of fuel pellets shows an increase in the use of wood and agricultural waste in industrial production of thermal energy in Europe, the Scandinavian countries and North America by 15% annually. Granules are a real alternative to coal and oil. Since, in terms of their heat transfer characteristics, they are not inferior to coal, and their environmental parameters are generally beyond competition. The heat of combustion of the granules is close to coal, but when they are burned, the CO2 emission is 10-50 times lower, and the ash formation is 15-20 times. So bio-fuel experts confidently claim that granules are a full substitute for coal. The manufacture of wood pellets occurs without chemical fixers under high pressure. It is worth noting that briquettes from agricultural waste are more ash-rich (for example, from sunflower husk - about 7%, from peat - from 2 to 15%) than wood pellets (0.3-3%) and their use for small briquettes boilers undesirable. The article substantiates the introduction of technologies for the processing of agricultural by-products into fuel granules. A developed technological line for the manufacture of granules and a design for chopping wood are proposed.


Author(s):  
Le Minh Nhut ◽  
Tran Quang Danh

Hot water is an important factor in domestic life and industrial development. Today, the heat pump is used to produce hot water more and more popular because it has many advantages of saving energy compared to the method of producing hot water by the hot water electric heater. The main aim of this study is to evaluate of the coefficient of performance (COP) of the small hot water heat pump using refrigeration R410A and R32. The capacity of both hot water heat pump is similar, one using new refrigerant R32 and other using refrigerant R410A. These heat pumps were designed and installed at the Ho Chi Minh City University of Technology and Education to evaluate the COP for the purpose of application the new refrigerant R32 for hot water heat pump. The compressor capacity is 1 Hp, the volume of hot water storage tank is of 100 liters and is insulated with thickness of 30 mm to reduce the heat loss to invironment, the required hot water temperature at the outlet of condenser is 50 oC, and the amount of required hot water is 75 liters per batch and is controlled by float valve. The experimental results indicate that the COP of the heat pump using the new refrigerant R32 is higher than heat pump using refrigerant R410A from 9% to 15% when the experimental conditions such as ambient temperature, initial water flow rate through the condenser and the required temperature of hot water were the same. In addition, the effect of the ambient temperature, initial water temperature and water flow rate were also evaluated.


2019 ◽  
Vol 1 (1) ◽  
pp. 154-163 ◽  
Author(s):  
Konstantinos Ninikas ◽  
Nicholas Hytiris ◽  
Rohinton Emmanuel ◽  
Bjorn Aaen

In this short communication, we demonstrate that the performance of a typical air source heat pump (ASHP), exploiting a relatively stable air temperature within a subway environment, is high, even during the peak heating months. After a nine-month operational run, the coefficient of performance is demonstrated to be 3.5. The design and installation difficulties are stated together with the lessons learnt following this trial. The actual energy and carbon savings are discussed.


2014 ◽  
Vol 1016 ◽  
pp. 748-752 ◽  
Author(s):  
R.V.M. Reis ◽  
Antonio A.T. Maia ◽  
Luiz Machado ◽  
Ricardo N.N. Koury

Heating water using solar energy can significantly reduce fossil fuel consumption. However, during the lack of sunlight it is necessary an alternative energy source to supplement or substitute the solar energy. To provide this additional energy, electrical resistances are among the most common devices used. In this work it is presented an experimental analysis of an alternative system to support solar water heating with a better cost-benefit ratio than that of the electrical resistance. For this purpose, a heat pump was designed, constructed and experimentally evaluated as supplementary heating source. To improve the system’s performance, a static evaporator was used as a substitute for the conventional evaporator. The mean coefficient of performance (COP) for the heat pump was 2.15. The same tests were performed utilizing an electrical resistance as heating source and the results obtained in this case were compared with the results obtained using the heat pump. The moderate cost of acquisition and installation of the heat pump allowed an investment return between 2.5 and 3.6 years, depending on the city in which the system is installed. Considering that the equipment has an estimated lifespan of 15 years, the internal rate of return varies from 24.5 to 37.9%, which is attractive for investment.


Sign in / Sign up

Export Citation Format

Share Document