Does Addition of Propolis to Glass Ionomer Cement Alter its Physicomechanical Properties? An in Vitro Study

2016 ◽  
Vol 40 (5) ◽  
pp. 400-403 ◽  
Author(s):  
P Subramaniam ◽  
KL Girish Babu ◽  
G Neeraja ◽  
S Pillai

Propolis is a natural resinous substance produced by honey bees. The antimicrobial effects of glass ionomer cement have been shown to improve with the addition of propolis; however its effect on the physicomechanical properties of the cement is not known. Aim: The purpose of this study was to evaluate the compressive strength and solubility of conventional restorative glass ionomer cement following the addition of propolis. Study design: Twenty half cylindrical samples were prepared with conventional restorative glass ionomer cement formed the control group. Another twenty samples were prepared with propolis added to conventional restorative glass ionomer cement formed the experimental group. The compressive strength was assessed using universal testing machine. To assess solubility, the samples were immersed in deionised water at room temperature, for 7 days. The solubility was measured as a difference in the weight of the sample; prior to immersion and following immersion at the end of each day. Results: The control group had a significantly higher mean compressive strength of 146.26 Mpa as compared to the experimental group (135.06 Mpa). The solubility between the groups was significant. Conclusion: In comparison to the control group, incorporation of propolis to conventional restorative glass ionomer cement decreased the compressive strength significantly. The solubility of the cement in the experimental group increased significantly over 7day period as compared to the control group.

2017 ◽  
Vol 41 (1) ◽  
pp. 62-65 ◽  
Author(s):  
P Subramaniam ◽  
KL Girish Babu ◽  
G Neeraja ◽  
S Pillai

Propolis is a natural resinous substance produced by honey bees. The antimicrobial effects of glass ionomer cement have been shown to improve with the addition of propolis; however its effect on the physicomechanical properties of the cement is not known. Aim: The purpose of this study was to evaluate the compressive strength and solubility of conventional restorative glass ionomer cement following the addition of propolis. Study design: Twenty half cylindrical samples were prepared with conventional restorative glass ionomer cement formed the control group. Another twenty samples were prepared with propolis added to conventional restorative glass ionomer cement formed the experimental group. The compressive strength was assessed using universal testing machine. To assess solubility, the samples were immersed in deionised water at room temperature, for 7 days. The solubility was measured as a difference in the weight of the sample; prior to immersion and following immersion at the end of each day. Results: The control group had a significantly higher mean compressive strength of 146.26 Mpa as compared to the experimental group (135.06 Mpa). The solubility between the groups was significant. Conclusion: In comparison to the control group, incorporation of propolis to conventional restorative glass ionomer cement decreased the compressive strength significantly. The solubility of the cement in the experimental group increased significantly over 7day period as compared to the control group.


2021 ◽  
Vol 10 (7) ◽  
pp. e5110716150
Author(s):  
Walber Maeda ◽  
Wayne Martins Nascimento ◽  
Marcelo Santos Coelho ◽  
Danilo de Luca Campos ◽  
João Paulo Drumond ◽  
...  

Aim: In this study was evaluated the fracture resistance of endodontically treated maxillary premolars restored with      different restorative materials. Methods: Sixty maxillary premolars were submitted to the same mesio-occlusal-distal cavity preparation, endodontic treatment and divided into 5 groups (n = 10): Coltosol Group – GCO restored with calcium silicate material; Glass Ionomer Cement Group – GGIC, restored with Maxxion R; Modified Glass Ionomer Cement – GMGIC, restored with Gold Label 2; Composite Group - GC, restored with Z100, and the positive control group (GP) - left unrestored. One group remained intact (n=10) serving as negative control (GN). Samples were subjected to fracture resistance testing by the universal testing machine until fracture occurred and was registered in newtons (N). Fracture pattern was assessed and described as favorable or unfavorable. The results were statistically analyzed by 1-way analysis of variance and the post hoc Tukey test with significant statistical difference at P < 0.05.  Results: Higher fracture resistance results were found for GC (1,128.35 ± 249.17), GMGIC (1,250.77 ± 173.29), and GN (1,277.22 ± 433.44) (P < .05). More favorable fractures were observed in the GCO (6), GC (7), and GN (7) (P < .05). Conclusion: Teeth restored with composite and modified GIC presented the same resistance as intact teeth. Teeth restored with Coltosol and GGIC presented similar resistance to unrestored teeth.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4964
Author(s):  
Ana Ivanišević ◽  
Valentina Brzović Rajić ◽  
Ana Pilipović ◽  
Matej Par ◽  
Hrvoje Ivanković ◽  
...  

The aim of this research was to investigate the compressive strength (CS), breaking strength (BS), and compressive modulus (CM) of conventional glass ionomer cement (GIC) modified with TiO2 nano particles, marine-derived hydroxyapatite (md-HAp) microparticles (<45 µm), and a combination of TiO2 NP and md-HAp particles. The materials used in the study were conventional GIC Fuji IX GP Extra (GC Corporation, Tokyo, Japan), TiO2 powder P25 (Degussa, Essen, Germany), and HAp synthesized from cuttlefish bone and ground in a mortar to obtain md-HAp powder. md-HAp was characterized using FTIR and SEM analysis. There were four groups of GIC samples: (i) Fuji IX control group, (ii) powder modified with 3 wt% TiO2, (iii) powder modified with 3 wt% HAp, and (iv) powder modified with 1.5 wt% TiO2 + 1.5 wt% HAp. Measurements were performed in a universal testing machine, and CS, BS, and CM were calculated. Statistical analysis was performed using ANOVA and Tukey’s tests. CS, BS, and CM differed significantly between the Fuji IX control group and all experimental groups while differences between the experimental groups were not statistically significant. The addition of TiO2 NP, md-HAp micro-sized particles, and a combination of TiO2 and md-HAp reduced the CS, BS, and CM of conventional GICs when mixed at the powder/liquid (p/l) ratio recommended by the manufacturer.


2021 ◽  
Vol 9 (D) ◽  
pp. 243-247
Author(s):  
Maiada Mohammad Ahmad Sa’ada ◽  
Nagwa Mohammed Ali Khattab ◽  
Maha Ishaq Amer

AIM: The aim of the study was to evaluate effect of silver diamine fluoride (SDF) on the shear bond strength (SBS) of glass ionomer restoration to primary dentine. MATERIALS AND METHODS: Twenty extracted primary molars with no restorations or developmental anomalies were only chosen for the study. Twenty dentine slices with 2 mm thickness were prepared and then randomly allocated into two groups (n = 10 per group). For Group 1 (experimental): Dentine surfaces were treated with 38% *SDF solution (Elevate oral care, USA) for 3 min using micro-brush, followed by a 30 s rinse with water and Group 2 (Control): Dentine surfaces were treated with distilled water for 3 min then rinsed for 30 s. The cavity conditioner was applied to flat dentin of both groups for 10 s then washed and dried gently with compressed air. All the specimens were restored with *RMGIC (Riva Light Cure, SDI, Australia). SBS was determined using a Universal Testing machine and Failure mode was evaluated using stereomicroscope. Data were collected and statistically analyzed. Independent t test was used to assess differences in SBS between study groups and mode of failure was analyzed using Fisher’s exact test. Level of significance was set at p ≤ 0.05. IBM SPSS statistical software (version 26) was used to analyze the data. RESULTS: The experimental group had significantly higher mean of shear bond (11.92 ± 3.35) strength than the control group (6.99 ± 2.98) (p = 0.003). CONCLUSIONS: Primary dentin pre-treatment with 38% SDF increases the shear bond strength between RMGIC and primary dentin according to the results of this in vitro study.


2015 ◽  
Vol 39 (2) ◽  
pp. 143-148 ◽  
Author(s):  
K Cantekin

The aim of the present study was to evaluate the bond strength of methacrylate-based (MB) composites, silorane-based (SB) composites, and glass-ionomer cement (GIC) in comparison to TheraCal and to compare those findings with the reference pulp capping material (MTA). Study design: A total of 90 acrylic blocks were prepared. Each of the blocks were prepared as 15 mm high and 10 mm diameter and the blocks had a 2 mm high and a 5 mm diameter central hole. In 45 of the samples, the holes were fully filled with TheraCal and in the other 45 samples, the holes were fully filled with MTA. The TheraCal and the MTA samples were randomly divided into 3 subgroups of 15 specimens each: Group-1: Methacrylate-based (MB) composite; Group-2: Silorane-based (SB) composite; and Group-3: Glass-ionomer cement (GIC). For the shear bond strength (SBS) test, each block was secured in a universal testing machine. After the SBS test, the fractured surfaces were examined under a stereomicroscope at ×25 magnification. Results: The analysis of variance that compared the experimental groups revealed the presence of significant differences among the groups (P &lt; 0.001). The highest (19.3 MPa) and the lowest (3.4 MPa) bond strength value were recorded for the MB composite-TheraCal and the GIC-TheraCal, respectively.There were significant differences in bond strength between the TheraCal and the MTA groups for the MB composite subgroup (P &lt; 0.001) and the SB composite subgroup (P &lt; 0.05); however, there was no significant difference in bond strength for the GIC subgroup (P ≯ 0.05). Conlusions: The results from this in vitro study suggest that the new pulp capping material, known as light-curable MTA, showed clinically acceptable and higher shear bond scores compared to MTA when used with the MB composite.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1700
Author(s):  
Atsushi Kameyama ◽  
Aoi Saito ◽  
Akiko Haruyama ◽  
Tomoaki Komada ◽  
Setsuko Sugiyama ◽  
...  

This study aimed to examine the marginal seal between various commercial temporary restorative materials and exposed dentin/built-up composite. Sixty bovine incisors were cut above the cemento-enamel junction, and half of the dentin was removed to form a step, which was built up using flowable resin composite. The root canals were irrigated, filled with calcium hydroxide, and sealed using one of six temporary sealing materials (hydraulic temporary restorative material, temporary stopping material, zinc oxide eugenol cement, glass-ionomer cement, auto-cured resin-based temporary restorative material, and light-cured resin-based temporary restorative material) (n = 10 for each material). The samples were thermocycled 500 times and immersed in an aqueous solution of methylene blue. After 2 days, they were cut along the long axis of the tooth and the depth of dye penetration was measured at the dentin side and the built-up composite side. For the margins of the pre-endodontic resin composite build-up, the two resin-based temporary restorative materials showed excellent sealing. Hydraulic temporary restorative material had a moderate sealing effect, but the sealing effect of both zinc oxide eugenol cement and glass-ionomer cement was poorer.


Sign in / Sign up

Export Citation Format

Share Document