Bond Strength to Unground Enamel and Sealing Ability in Pits and Fissures of a New Self-Adhering Flowable Resin Composite

2013 ◽  
Vol 37 (4) ◽  
pp. 397-402 ◽  
Author(s):  
M Margvelashvili ◽  
A Vichi ◽  
M Carrabba ◽  
C Goracci ◽  
M Ferrari

Objective: To evaluate the applicability as a sealant of a new self-adhering flowable resin composite (Vertise Flow, Kerr, VF) by assessing shear bond strength (SBS) to unground enamel and microleakage (?LKG) in sealed pits and fissures. Study Design: Marketed sealants to be used in combination with phosphoric acid (Guardian Seal, Kerr, GS) or with a self-etch adhesive (Adper Prompt-L-Pop/Clinpro Sealant, 3M ESPE, CS) were compared to VF. For SBS testing on unground enamel 10 molars per group were used. For ?LKG assessment, pits and fissures sealing was performed in 12 molars per group. The sealed teeth were immersed in a 50% weight silver nitrate solution for 24 hours and the extent of interfacial leakage was measured. Between-group differences in SBS were assessed using One-Way Analysis of Variance (ANOVA), followed by Tukey test (p<0.05). ?LKG data were analyzed with Kruskall-Wallis ANOVA (p>0.05). Results: SBS of VF was statistically similar to that measured by CS and higher than that of GS. Interfacial leakage was similar in the three groups. Conclusions: The finding of satisfactory bond strength and sealing ability of VF when compared to the marketed sealants encourages the use of VF in pit and fissure sealing.

2016 ◽  
Vol 41 (3) ◽  
pp. 305-317 ◽  
Author(s):  
P Makishi ◽  
CB André ◽  
APA Ayres ◽  
AL Martins ◽  
M Giannini

SUMMARY Purpose: To investigate bond strength and nanoleakage expression of universal adhesives (UA) bonded to dentin and etched enamel. Methods: Extracted human third molars were sectioned and ground to obtain flat surfaces of dentin (n = 36) and enamel (n = 48). Dentin and etched enamel surfaces were bonded with one of two UAs, All-Bond Universal (ABU) or Scotchbond Universal (SBU); or a two-step self-etching adhesive, Clearfil SE Bond (CSEB). A hydrophobic bonding resin, Adper Scotchbond Multi-Purpose Bond (ASMP Bond) was applied only on etched enamel. Following each bonding procedure, resin composite blocks were built up incrementally. The specimens were sectioned and subjected to microtensile bond strength (MTBS) testing after 24 hours or one year water storage, or immersed into ammoniacal silver nitrate solution after aging with 10,000 thermocycles and observed using scanning electron microscopy. The percentage distribution of silver particles at the adhesive/tooth interface was calculated using digital image-analysis software. Results: The MTBS (CSEB = SBU > ABU, for dentin; and CSEB > ABU = SBU = ASMP Bond, for etched enamel) differed significantly between the adhesives after 24 hours. After one year, MTBS values were reduced significantly within the same adhesive for both substrates (analysis of variance, Bonferroni post hoc, p<0.05), and no significant differences were found among the adhesives for etched enamel. Silver particles could be detected within the adhesive/dentin interface of all specimens tested. Kruskal-Wallis mean ranks for nanoleakage in ABU, SBU, and CSEB were 16.9, 18.5 and 11, respectively (p>0.05). Conclusions: In the short term, MTBS values were material and dental-substrate dependent. After aging, a decrease in bonding effectiveness was observed in all materials, with nanoleakage at the adhesive/dentin interface. The bonding of the UAs was equal or inferior to that of the conventional restorative systems when applied to either substrate and after either storage period.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Sabine Geerts ◽  
Amandine Bolette ◽  
Laurence Seidel ◽  
Audrey Guéders

Our experiment evaluated the microleakage in resin composite restorations bonded to dental tissues with different adhesive systems. 40 class V cavities were prepared on the facial and lingual surfaces of each tooth with coronal margins in enamel and apical margins in cementum (root dentin). The teeth were restored with Z100 resin composite bonded with different adhesive systems: Scotchbond Multipurpose (SBMP), a 3-step Etch and Rinse adhesive, Adper Scotchbond 1 XT (SB1), a 2-step Etch and Rinse adhesive, AdheSE One (ADSE-1), a 1-step Self-Etch adhesive, and AdheSE (ADSE), a 2-step Self-Etch adhesive. Teeth were thermocycled and immersed in 50% silver nitrate solution. When both interfaces were considered, SBMP has exhibited significantly less microleakage than other adhesive systems (resp., for SB1, ADSE-1 and ADSE, , and ). When enamel and dentin interfaces were evaluated separately, (1) for the Self-Etch adhesives, microleakage was found greater at enamel than at dentin interfaces (for ADSE, and for ADSE-1, ); (2) for the Etch and Rinse adhesive systems, there was no significant difference between enamel and dentin interfaces; (3) SBMP was found significantly better than other adhesives both at enamel and dentin interfaces. In our experiment Etch and Rinse adhesives remain better than Self-Etch adhesives at enamel interface. In addition, there was no statistical difference between 1-step (ADSE-1) and 2-step (ADSE) Self-Etch adhesives.


2013 ◽  
Vol 38 (5) ◽  
pp. E154-E165 ◽  
Author(s):  
E Mobarak ◽  
R Seyam

SUMMARY Objective The purpose of the study was to evaluate the nanoleakage and bond strength of different self adhesive systems cured with a modified-layering technique (MLT) to dentin of weakened roots. Methods Twenty-one maxillary incisors were decoronated and then root canals were instrumented and obturated with the cold lateral compaction technique. Weakened roots were simulated by flaring root canals until only 1 mm dentin thickness remained. Teeth were distributed into three groups. The canals were backfilled with Vertise Flow (VF group), a self-adhering system, following a modified-layering technique using two light-transmitting posts, sizes 6 and 3. DT Light Post size 2 was cemented using the same material. Remaining roots were prepared and cured in the same way as the VF group. However, in the TS/MF group, Clearfil Tri-S Bond (TS) adhesive and Clearfil Majesty Flow (MF) composite were used, while in the ED/PF group, ED primer II (ED)/Panavia F2.0 (PF) were used. After one week of storage, each root was sectioned to obtain six slices (two slices from each root third: coronal, middle and apical) of 0.9 ± 0.1 mm thickness. Interfacial nanoleakage expression was analyzed using a field emission scanning electron microscope (FEG-SEM), and the micro push-out bond strength (μPOBS) was measured at different root regions. Modes of failure were also determined using SEM. Data were statistically analyzed using two-way analysis of variance with repeated measures and Tukey post hoc test (p≤0.05). Results With MLT, all adhesive systems showed nanoleakage. For μPOBS, there was a statistically significant effect for adhesive systems (p<0.001) but not for root region (p<0.64) or for their interaction (p=0.99). Tukey post hoc test revealed that the bond strength of the VF group was significantly higher than the TS/MF and ED/PF groups for all root regions. Conclusion All of the tested self-adhesive systems cured using MLT had slight nanoleakage and were not sensitive to root regional differences. Self-adhering systems had higher bond strength than self-etch adhesives.


2020 ◽  
Vol 8 (10) ◽  
pp. 454-459
Author(s):  
Bhalla V. ◽  
◽  
K. Goud M. ◽  
Chockattu S. ◽  
Khera A ◽  
...  

Background:Dentin bonding is an ever-evolving field in adhesive dentistry. With the introduction of newer systems into the market, there is a crucial need to test their efficiency in terms of bond strength. Dual-cured adhesives in theory may provide for a better degree of conversion as compared to conventional light-cured adhesives .Thus, the aim of this study was to compare the shear bond strength of three different self-etch adhesives namely ClearfilSE bond (Kuraray), Tetric N Bond Universal (IvoclarVivadent) and Futura Bond DC (Voco) to dentin. Materials & Methods: Ninety extracted non-carious, intact human mandibular molar teeth were selected for this study. Each tooth was decoronated using a double-sided diamond disc with water coolant to a depth of 2mm from the cusp tip .The cut dentin surface was then abraded against 600-grit wet silicon carbide papers for 60 seconds to produce a uniform smear layer. The root portion of each tooth was mounted on a plastic ring using cold cure acrylic resin. Specimens were then divided into three adhesive groups of 30 teeth each, Group A: ClearfilSE Bond (Kuraray), Group B: Tetric N Bond Universal (IvoclarVivadent), Group C :Futura Bond DC (Voco). All bonding agents were used according to the manufacturers’ instructions, in combination with the resin composite Tetric N Ceram (IvoclarVivadent). The samples were thermocycled, followed by shear bond strength testing using a Universal testing machine (Hounsfield). Data were subjected to statistical analysis using one-way analysis of variance (ANOVA) (P<0.05) and Post hoc Tukey’s test for inter- and intra- group analysis respectively. Results: Clearfil SE Bond yielded the highest shear bond strength values (30.9 ±4.66 MPa) which were statistically significant, followed byTetric N Bond Universal group (29.8 ±4.34) and the lowest shear bond strength values were recorded for Futura Bond DC (18.2 ±3.13). Conclusion: Clearfil SE bond and Tetric N bond Universal can be considered as better options than Futura Bond DC.


2003 ◽  
Vol 50 (2) ◽  
pp. 59-64 ◽  
Author(s):  
Larisa Blazic ◽  
Slavoljub Zivkovic

The purpose of this study was to evaluate the marginal microleakage in Class II with different materials in resin composite restorations cured by using "soft start" and standard polymerization techniques. Two adhesive Class II cavities were prepared in 50 human teeth with enamel in-between. Samples were divided into 5 groups and filled with composite resins, compatible flow resin composites and bonding systems. The ocluso-mesial restorations were cured with standard curing technique, and the ocluso-distal restorations were cured with "soft start" curing technique. After thermocycling, the teeth were immersed in silver nitrate solution and sectioned for leakage evaluation. The results pointed out, after "soft start" and standard curing techniques, that the best marginal behavior in Class II restorations was obtained with Tetric Ceram / Tetric Flow composite resins, then with Filtek Z 250 / Filtek Flow, followed by Admira Admira Flow and Point / Revolution composite materials. The deepest dye penetration was found in cavities with Diamond Lite / Diamond Link composite restorations. No statistically significant difference was found in the tested composite resin restorations, whether treated with "soft start" polymerization or with standard polymerization technique, in regard to marginal micro leakage.


2013 ◽  
Vol 24 (4) ◽  
pp. 335-339 ◽  
Author(s):  
Cesar Pomacondor-Hernandez ◽  
Alberto Nogueira de Gama Antunes ◽  
Vinicius di Hipolito ◽  
Mario Fernando de Goes

The purpose of this study was to evaluate the effect of replacing a component of the self-etch adhesive Adper Scotchbond SE (liquid A + liquid B) by 2% chlorhexidine (CHX) on bond strength to dentin after 1 day, 3 months or 6 months of water storage. Eight human teeth were sectioned to expose a flat dentin surface and were then randomly assigned to 2 groups. In the control group, the dentin surfaces were treated with the adhesive according to the manufacturer's instructions. In the experimental group, liquid A was replaced by 2% CHX. Next, a 6-mm-high resin composite block was incrementally built on the bonded surfaces. The restored teeth were then sectioned to produce stick-shaped specimens (cross-sectional area - 0.8 mm2). The microtensile bond strength (µTBS) was recorded, and the failure modes were assessed. Data were analyzed by two-way repeated measures ANOVA (α=0.05). Four additional teeth were processed in order to conduct a micromorphological analysis of the resin-dentin interface. The µTBS values did not significantly decrease after water storage in either the control or the experimental group, whose values did not differ significantly irrespective of storage time. The morphological aspect of the bonding interface appears not to have been affected by CHX. A higher incidence of cohesive failures within the adhesive and mixed failures (cohesive within adhesive and resin composite) was observed for both groups. It may be concluded that dentin pre-treatment with 2% CHX did not influence significantly the bonding performance of the evaluated adhesive.


2019 ◽  
Vol 9 (10) ◽  
pp. 1454-1458
Author(s):  
Abdulaziz M. Albaker ◽  
Abdulaziz Alsahhaf ◽  
Sarah A. Mubaraki ◽  
Modhi Al Deeb ◽  
Laila Al Deeb ◽  
...  

The aim of the present study was to evaluate the influence of gingival retraction agents and different bonding regimes on the shear bond strength (SBS) of dentin to resin composite. Sixty human teeth were divided into six groups (n = 10) based different combinations of hemostatic agents (Viscostat and Expasyl) and dentin bonding regimes [Total-etch (TE) and self-etch (SE)]. Group A1, Expasyl and TE; group A2: Expasyl and SE; group B1: Viscostat and TE; group B2: Viscostat and SE, group C1 (control): No hemostatic agent and TE; group C2 (control): No hemostatic agent and SE. Composite build-ups (Tetric N Ceram) were performed after dentin treatments and SBS was assessed using universal testing machine. Failure analysis was performed with a stereomicroscope and classified as adhesive, cohesive and admixed. Data was analysed using ANOVA and multiple comparisons test. The maximum and minimum SBS was displayed by specimens in group C1 (36 59 ± 5 94 MPa) and group B2 (17 95 ± 2 52 MPa) respectively. Control groups (C1 and C2) showed statistically comparable SBS, which was significantly higher in comparison to experimental groups (A1, A2, B1, and B2) (p < 0.05). Hemostatic agents inhibited the adhesive bond strength of composite to tooth dentin. Reversal effect of total-etch and self-etch bonding regimes on hemostatic agent treated dentin SBS was minimal.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Katrin Zumstein ◽  
Anne Peutzfeldt ◽  
Adrian Lussi ◽  
Simon Flury

This study investigated the effect of SnCl2/AmF pretreatment on short- and long-term bond strength of resin composite to eroded dentin mediated by two self-etch, MDP-containing adhesive systems. 184 dentin specimens were produced from extracted human molars. Half the specimens (n=92) were artificially eroded, and half were left untreated. For both substrates, half the specimens were pretreated with SnCl2/AmF, and half were left untreated. The specimens were treated with Clearfil SE Bond or Scotchbond Universal prior to application of resin composite. Microtensile bond strength (μTBS) was measured after 24 h or 1 year. Failure mode was detected and EDX was performed. μTBS results were statistically analyzed (α=0.05). μTBS was significantly influenced by the dentin substrate (eroded < noneroded dentin) and storage time (24 h > 1 year; p<0.0001) but not by pretreatment with SnCl2/AmF or adhesive system. The predominant failure mode was adhesive failure at the dentin-adhesive interface. The content of Sn was generally below detection limit. Pretreatment with SnCl2/AmF did not influence short- and long-term bond strength to eroded dentin. Bond strength was reduced after storage for one year, was lower to eroded dentin than to noneroded dentin, and was similar for the two adhesive systems.


2016 ◽  
Vol 27 (4) ◽  
pp. 446-451 ◽  
Author(s):  
João Luiz Bittencourt de Abreu ◽  
Maíra Prado ◽  
Renata Antoun Simão ◽  
Eduardo Moreira da Silva ◽  
Katia Regina Hostilio Cervantes Dias

Abstract Studies have been showing a decrease of bond strength in dentin treated with sodium hypochlorite (NaOCl). The aim of this study was to evaluate the effect of non-thermal argon plasma on the bond strength of a self-etch adhesive system to dentin exposed to NaOCl. Thirty-two flat dentin surfaces of bovine incisors were immersed in 2.5% NaOCl for 30 min to simulate the irrigation step during endodontic treatment. The specimens were divided into four groups (n=8), according to the surface treatment: Control (without plasma treatment), AR15 (argon plasma for 15 s), AR30 (argon plasma for 30 s) and AR45 (argon plasma for 45 s). For microtensile bond strength test, 5 specimens were used per group. In each group, the specimens were hybridized with a self-etch adhesive system (Clearfil SE Bond) and resin composite buildups were constructed. After 48 h of water storage, specimens were sectioned into sticks (5 per tooth, 25 per group) and subjected to microtensile bond strength test (μTBS) until failure, evaluating failure mode. Three specimens per group were analyzed under FTIR spectroscopy to verify the chemical modifications produced in dentin. μTBS data were analyzed using ANOVA and Tamhane tests (p<0.05). AR30 showed the highest μTBS (20.86±9.0). AR15 (13.81±6.4) and AR45 (11.51±6.8) were statistically similar to control (13.67±8.1). FTIR spectroscopy showed that argon plasma treatment produced chemical modifications in dentin. In conclusion, non-thermal argon plasma treatment for 30 s produced chemical changes in dentin and improved the μTBs of Clearfil SE Bond to NaOCl-treated dentin.


2014 ◽  
Vol 13 (1) ◽  
pp. 7
Author(s):  
Dewi Puspitasari ◽  
Andi Soufyan ◽  
Ellyza Herda

Composite resin is a widely used aesthetic restoration. The restoration can fail due to secondary caries. Chlorhexidinegluconate 2% is used as a cavity disinfectant to eliminate microorganisms on the prepared cavity and to prevent thesecondary caries. The purpose of this study was to analyze the effect of chlorhexidine gluconate 2% to the bondstrength of composite resin with self etch system adhesive on dentine. Sixteen specimens of buccal dentine of premolarscrown are divided into 2 different groups. Group I: Clearfil SE Bond self-etch primer was applied for 20 seconds,Clearfil SE Bond bonding was applied for 5 seconds and polymerized for 10 seconds. Composite resin was constructedincrementally and polymerized for 20 seconds. Group II: prior to self etch primer application as in group I,chlorhexidine gluconate 2% was applied for 15 seconds. Shear bond strength was tested using Testing machine andanalyzed with unpaired T test. The highest shear bond strength was obtained by applying chlorhexidine gluconate 2%.The study concludes that chlorhexidine gluconate 2% application to dentine did not affect significantly to the bondstrength composite resin using self etch adhesive systems.


Sign in / Sign up

Export Citation Format

Share Document