On humoral factors in nervous activity

1935 ◽  
Vol 31 (6) ◽  
pp. 777-787
Author(s):  
D. S. Vorontsov

Not only in the peripheral working organs, irritating substances are formed, which, as we can see, take an active part in their regulation, but also in the central nervous system, in the relationship of its individual elements, such substances apparently play an important role.

Author(s):  
V. S. Lyzohub ◽  
V. V. Shpanyuk ◽  
V. O. Pustovalov ◽  
T. V. Kozhemyako ◽  
V. O. Suprunovich

Introduction.During the study, we tried to find out whether the temporal characteristics of sensory-motor response can reflect the typological properties of the central nervous system. Such research is essential to reveal the mechanisms of development of higher mental functions and mental capacity.Purpose.To establish the relationship between the speed characteristics of visual-motor reaction different complexity and individual-typological properties of the central nervous system.Methods.Individual differences of sensorimotor reaction and the properties of the main nervous processes were determined by the method of M. V. Makarenko [8] using the computer system "Diagnost-1". 32 teenagers aged 10-11 were examined. During the study, the indicators of latent periods of simple (SVMR) and complex visual-motor reactions of choice (RC1-2, RC2-3), functional mobility of nervous processes (FMNS) were investigated. Results.Speed characteristics of simple (SVMR) and complex visual-motor reactions of choice of one (RC1-3) and choice of two (RC2-3) excitatory and inhibitory signals were studied in order to 202177use them to assess individual typological properties of the central nervous system (CNS) in adolescents 10-11 years old. There is no evidence of a relationship between the rate of SVMR with different levels of functional mobility (FMNS) of nervous processes in adolescents 10-11 years old.The reaction rate did not differ statistically and was the same in representatives with high, medium and low levels oftypological properties of nervous system. The results of the correlation analysis between SVMR and FMNP were r = 0.13 (p = 0.59), which indicated no relationship between them. The relationship of sensorimotor response time with individual-typological features of the CNS was established in complex information differentiation RC2-3. The temporal characteristics of RC2-3 were dependent on the individual-typological properties of the CNS.The reaction rate of RC2-3 was higher in adolescents 10-11 years old with high levels of -3 were r = 0.35 (p = 0.034).The results show that the velocity characteristics of complex neurodynamic acts, in contrast to simple ones, can be used as quantitative characteristics of the typological properties of the CNS.Originality.The results of our research may be evidence that the indicator RC2-3 can be used as an additional informative criterion for assessing the individual-typological properties of the higher parts of the central nervous system.Conclusion. The temporal characteristics of SVMR and RC1-3 cannot be considered as informative criteria for assessing the individual-typological properties of CNS in adolescents 10-11 years. Time characteristics of RC2-3 differentiation reactions can be used as additional indicators for assessing the individual-typological properties of higher nervous activity in adolescents 10-11 years, namely, the level of functional mobility of nervous processes.Key words:processing of information of various complexity, speed characteristics of simple reactions, motor acts of choice and differentiation, individual-typological properties, functional mobility of nervous processes


1935 ◽  
Vol 31 (5) ◽  
pp. 650-663
Author(s):  
D. S. Vorontsov

Until recently, science has held the view that the body's activities are managed in two fundamentally different ways - the nervous system, where the central nervous system plays the main coordinating role, and the chemical system.


PEDIATRICS ◽  
1953 ◽  
Vol 12 (3) ◽  
pp. 337-337

In a compact yet clear manner, this book discusses the uses and limitations of encephalography in the diagnosis, study and treatment of diseases of the central nervous system. Technical details, controversial matter, and interpretative record evaluations are offered in as simplified a manner as is possible, and consistent with reasonable accuracy. In addition to short descriptions of the pertinent historical background, basic neurophysiology involved and general technics, the book also includes chapters on the relationship of the EEG to epilepsy, neurologic and neurosurgical problems, and psychiatric conditions.


2020 ◽  
Vol VII (2) ◽  
pp. 55-59
Author(s):  
S. A. Trushkovskiy

The question of the relationship of the borderline trunk of the sympathetic nerve to the central nervous system is almost completely undeveloped until the present time, and only recently, thanks to the improvement of methods for studying nerve fibers, it became possible for a more accurate further development of this issue.


1905 ◽  
Vol 51 (213) ◽  
pp. 258-270
Author(s):  
John Turner

Workers in the finer structure of the nervous system are suffering from a plethora of observations. New and more searching methods are being discovered every day, and no sooner does he who sets about constructing a scheme of the central nervous system arrive at something which appears to be satisfactory than he has to pull it to pieces and reconstruct it, to fit in further detail which has been brought to light in the meanwhile. Until this vast array of observations has been properly digested, a process which may well take years, we can scarcely hope to obtain a scheme of the relationship of the nerve-cells to one another which will be more than a working hypothesis.


1984 ◽  
Vol 4 (2) ◽  
pp. 93-98 ◽  
Author(s):  
Luigi F. Agnati ◽  
Kjell Fuxe

The hypothesis is introduced that miniaturization of neuronal circuits in the central nervous system and the hierarchical organization of the various levels, where information handling can take place, may be the key to understand the enormous capability of the human brain to store engrams as well as its astonishing capacity to reconstruct and organize engrams and thus to perform highly sophisticated integrations. The concept is also proposed that in order to understand the relationship between the structural and functional plasticity of the central nervous system it is necessary to postulate the existence of memory storage at the network level, at the local circuit level, at the synaptic level, at the membrane level, and finally at the molecular level. Thus, memory organization is similar to the hierarchical organization of the various levels, where information handling takes place in the nervous system. In addition, each higher level plays a role in the reconstruction and organization of the engrams stored at lower levels. Thus, the trace of the functionally stored memory (i.e. its reconstruction and organization at various levels of storage) will depend not only on the chemicophysical changes in the membranes of the local circuits but also on the organization of the local circuits themselves and their associated neuronal networks.


2020 ◽  
Vol 21 (6) ◽  
pp. 2010 ◽  
Author(s):  
Maria Rosaria Rizzo ◽  
Renata Fasano ◽  
Giuseppe Paolisso

Adiponectin (ADPN) is a plasma protein secreted by adipose tissue showing pleiotropic effects with anti-diabetic, anti-atherogenic, and anti-inflammatory properties. Initially, it was thought that the main role was only the metabolism control. Later, ADPN receptors were also found in the central nervous system (CNS). In fact, the receptors AdipoR1 and AdipoR2 are expressed in various areas of the brain, including the hypothalamus, hippocampus, and cortex. While AdipoR1 regulates insulin sensitivity through the activation of the AMP-activated protein kinase (AMPK) pathway, AdipoR2 stimulates the neural plasticity through the activation of the peroxisome proliferator-activated receptor alpha (PPARα) pathway that inhibits inflammation and oxidative stress. Overall, based on its central and peripheral actions, ADPN appears to have neuroprotective effects by reducing inflammatory markers, such as C-reactive protein (PCR), interleukin 6 (IL6), and Tumor Necrosis Factor a (TNFa). Conversely, high levels of inflammatory cascade factors appear to inhibit the production of ADPN, suggesting bidirectional modulation. In addition, ADPN appears to have insulin-sensitizing action. It is known that a reduction in insulin signaling is associated with cognitive impairment. Based on this, it is of great interest to investigate the mechanism of restoration of the insulin signal in the brain as an action of ADPN, because it is useful for testing a possible pharmacological treatment for the improvement of cognitive decline. Anyway, if ADPN regulates neuronal functioning and cognitive performances by the glycemic metabolic system remains poorly explored. Moreover, although the mechanism is still unclear, women compared to men have a doubled risk of developing cognitive decline. Several studies have also supported that during the menopausal transition, the estrogen reduction can adversely affect the brain, in particular, verbal memory and verbal fluency. During the postmenopausal period, in obese and insulin-resistant individuals, ADPN serum levels are significantly reduced. Our recent study has evaluated the relationship between plasma ADPN levels and cognitive performances in menopausal women. Thus, the aim of this review is to summarize both the mechanisms and the effects of ADPN in the central nervous system and the relationship between plasma ADPN levels and cognitive performances, also in menopausal women.


Sign in / Sign up

Export Citation Format

Share Document