scholarly journals Effect of mare and cow kumis on gastric secretion

2021 ◽  
Vol 32 (2-3) ◽  
pp. 140-143
Author(s):  
L. B. Shalman

Kumis is a product of two fermentation, brought to a well-known equilibrium - lactic acid and alcohol. In this case, milk proteins, mainly casein, undergo partial hydrolysis, passing into solution.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2579
Author(s):  
Carmen-Alina Bolea ◽  
Mihaela Cotârleț ◽  
Elena Enachi ◽  
Vasilica Barbu ◽  
Nicoleta Stănciuc

Two multi-functional powders, in terms of anthocyanins from black rice (Oryza sativa L.) and lactic acid bacteria (Lactobacillus paracasei, L. casei 431®) were obtained through co-microencapsulation into a biopolymer matrix composed of milk proteins and inulin. Two extracts were obtained using black rice flour as a raw material and hot water and ethanol as solvents. Both powders (called P1 for aqueous extract and P2 for ethanolic extract) proved to be rich sources of valuable bioactives, with microencapsulation efficiency up to 80%, both for anthocyanins and lactic acid bacteria. A higher content of anthocyanins was found in P1, of 102.91 ± 1.83 mg cyanindin-3-O-glucoside (C3G)/g dry weight (DW) when compared with only 27.60 ± 17.36 mg C3G/g DW in P2. The morphological analysis revealed the presence of large, thin, and fragile structures, with different sizes. A different pattern of gastric digestion was observed, with a highly protective effect of the matrix in P1 and a maximum decrease in anthocyanins of approximatively 44% in P2. In intestinal juice, the anthocyanins decreased significantly in P2, reaching a maximum of 97% at the end of digestion; whereas in P1, more than 45% from the initial anthocyanins content remained in the microparticles. Overall, the short-term storage stability test revealed a release of bioactive from P2 and a decrease in P1. The viable cells of lactic acid bacteria after 21 days of storage reached 7 log colony forming units (CFU)/g DW.


1958 ◽  
Vol 25 (1) ◽  
pp. 32-51 ◽  
Author(s):  
Peggy B. Taylor ◽  
L. F. L. Clegg

The determination of apparent lactic acid has been used as a basis for a rejection test for raw milk. The method consists of precipitation of milk proteins with barium chloride, sodium hydroxide and zinc sulphate, and the addition of ferric chloride to the filtrate to produce the yellow colour of ferric lactate. Lactic acid is not solely responsible for the production of the yellow colour, which, nevertheless, gives a good relationship with keeping quality of milk (measured as hours to the C.O.B. end-point at 22° C.) and the values have been expressed as ‘apparent lactic acid’.The relationship of winter and summer milks to keeping quality has been studied, and a value of 0·03% apparent lactic acid in milk is equivalent to an average keeping quality of 5¾ and 8½ hr. for winter and summer milks, respectively. A value of 0·03% is recommended as the earliest value of apparent lactic acid at which milk could be rejected.The apparent lactic acid in colostrum and late-lactation milk and in milk from cows suffering from mastitis has been determined, and only in late-lactation milk were the values found to be significantly higher than usual in fresh raw milk, and an inverse relationship between yield and apparent lactic acid is suggested.Permanent glass matching disks have been prepared for use in a Lovibond comparator. This permits the intensity of the yellow colour produced with 1% ferric chloride to be determined and the apparent lactic acid in milk estimated.Grateful acknowledgement is made to the management and staff of the Dairy Department of the Reading Co-operative Society and the Farmer's Clean Milk Dairy, Reading, and local milk producers for supplying samples for experiments; to the N.M.T.S. staff in Reading for help in finding suitable farmers, and to the Dairy Husbandry Department of the N.I.R.D. for information about and samples of abnormal and late-lactation milk. Our particular thanks are due Miss Marie Gruber for technical assistance, to Dr N. J. Berridge for the suggestion and help on the work on pH change as an indication of keeping quality (given in the appendix), and to Dr A. T. R. Mattick for the advice given in this work.


2010 ◽  
Vol 159 (1-3) ◽  
pp. 129-136 ◽  
Author(s):  
Paul Guilloteau ◽  
Véronique Romé ◽  
Luc Delaby ◽  
François Mendy ◽  
Loic Roger ◽  
...  

2017 ◽  
Vol 177 ◽  
pp. 406-414 ◽  
Author(s):  
Johnny Birch ◽  
Hörður Kári Harðarson ◽  
Sanaullah Khan ◽  
Marie-Rose Van Calsteren ◽  
Richard Ipsen ◽  
...  

1983 ◽  
Vol 2 (4) ◽  
pp. 613-616 ◽  
Author(s):  
Irene Jakobsson ◽  
Stefan Borulf ◽  
Tor Lindberg ◽  
Birgitta Benediktsson

2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Gaia Bertani ◽  
Daniela Bassi ◽  
Monica Gatti ◽  
Pier Sandro Cocconcelli ◽  
Erasmo Neviani

ABSTRACT Lactobacillus helveticus is a lactic acid bacterium widely used in cheese-making and for the production of bioactive peptides from milk proteins. Here, we describe the draft genome sequence and annotation of L. helveticus strain Lh 12 isolated from natural whey starter used in the production of Grana Padano cheese.


2012 ◽  
Vol 430-432 ◽  
pp. 890-893 ◽  
Author(s):  
Shuang Zhang ◽  
Lan Wei Zhang

Lactic acid bacterial play a important role in yogurt texture and gel quality. The performance of lactic acid bacteria starter directly affected the quality of yogurt. Exopolysaccharide (EPS)-producing LAB may improve the texture of fermented milks, depending on the strain. EPS production was found to have a major effect on the texture properties and gelation properties, but varying textures with EPS production, structure and interaction with milk proteins. Yoghurts fermented with EPS-producing cultures showed different mouth thickness and ropiness rheological parameters and varying syneresis and gel firmness. The mechanism that how the metabolic properties of EPS producing lactic acid bacteria affect the texture and gel quality of yogurt is reviewed in the article.


Author(s):  
Kanika Sharma ◽  
Nivedita Sharma ◽  
Shweta Handa ◽  
Shruti Pathania

Abstract Background Microbial origin polysaccharides have gained popularity due to lesser toxicity, better degradability and selectivity as compared to their synthetic counterparts and can be used as emulsifier, stabilizer, thickener, texturizer, flocculating and gelling agent. Here main emphasis on exopolysaccharide production from potential lactic acid bacteria that has GRAS status. Results This work was aimed at isolating, purifying and characterizing an extracellular polysaccharide (EPS) produced by a foodgrade lactic acid bacteria Lactobacillus paraplantarum KM1. L. paraplantarum KM1 was isolated from human milk and identified by conventional and molecular techniques. The 16S rRNA sequence of the isolate was registered in National Centre for Biotechnology Information (NCBI) under accession number KX671558. L. paraplantarum KM1 was found to produce EPSs in lactose containing MRS medium, and the maximum yield (47.4 mg/ml) was achieved after 32-h incubation. As evident from TLC and HPLC analyses, the polysaccharide was found to be a heteropolymer-containing glucose, galactose and mannose as main sugars. Different oligosaccharides namely hexoses were obtained after partial hydrolysis of the polymer using MALDI-ToF-MS. The total molecular weight of all polysaccharides present was 348.7 kDa with 100 °C thermal stability as well as water soluble in nature. Cell cytotoxicity revealed that the purified EPS was safe for consumption; thus, it can be used in various food industries as emulsifying and texture agent. Conclusions The present study highlighted that exopolysaccharides could be harnessed to improve food products in terms of texture, emulsifying agents, pharmaceutical industry (antioxidants, antitumour, anti-inflammatory and antiviral agents) and as safety purposes.


Sign in / Sign up

Export Citation Format

Share Document