scholarly journals The activity of transforming growth factor-β in young age with marfanoid habitus

2019 ◽  
Vol 10 (1) ◽  
pp. 49-56
Author(s):  
Eugene V. Timofeev ◽  
Eduard G. Malev ◽  
Ekaterina B. Luneva ◽  
Eduard V. Zemtsovsky

According to contemporary views, hereditary connective tissue disorders divided classified Marfan syndrome, Loeys-Dietz’s, Ehlers-Danlos syndrome, the primary mitral valve prolapse. It is known that the fibrillinopaty, which include the Marfan syndrome and Loeys-Dietz’s is characterized by activation of TGF-β signaling pathway. With high le vels of TGF-β attributed most of these clinical manifestations these diseases – aneurysm of the aorta, arahnodaktylya, duralectasy. Assessment of the activity of TGF-β in persons with marfanoid habitus has not previously been studied. Materials and methods. As part of this work, surveyed 70 people: 61 patients young age (median age of 20.1 ± 2.1 years), among which 36 boys and 25 girls and 9 men with verified diagnosis Marfan syndrome (median age 27.9 ± 9.3 years). All survey performed Echocardiography with a targeted search of small anomalies of heart. Results. Correlation analysis showed a direct and reliable connection between arahnodaktylya and concentration of TGF-β1 in serum (r = 0.4, p = 0.05). For young people with signs of marfanoid habitus are characterized by reliably a higher concentration in the serum of both isoforms of TGF-β. Excess of threshold levels of TGF-β1 revealed at 20% of the core group and not found at all in the control (p < 0.05). Among persons with exceedances of threshold values for at least one faction of the TGF-β patients with signs of marfanoid habitus met almost three times more often than in the group with normal values of TGF-β (p = 0.01, χ2 = 5.58). In the group of persons with marfanoid habitus and increases TGF-β are detected more frequently such as atrial septal aneurysm, false chord left ventricle papillary muscles, incremental, deflection of shutters of the mitral valve in 1-2 mm, asymmetry tricuspid aortic valve.

2021 ◽  
Vol 22 (21) ◽  
pp. 11737
Author(s):  
Tzu-Heng Huang ◽  
Hsiao-Huang Chang ◽  
Yu-Ru Guo ◽  
Wei-Chiao Chang ◽  
Yi-Fan Chen

Thoracic aortic aneurysm (TAA) formation is a multifactorial process that results in diverse clinical manifestations and drug responses. Identifying the critical factors and their functions in Marfan syndrome (MFS) pathogenesis is important for exploring personalized medicine for MFS. Methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), and methionine synthase reductase (MTRR) polymorphisms have been correlated with TAA severity in MFS patients. However, the detailed relationship between the folate-methionine cycle and MFS pathogenesis remains unclear. Fbn1C1039G/+ mice were reported to be a disease model of MFS. To study the role of the folate-methionine cycle in MFS, Fbn1C1039G/+ mice were treated orally with methionine or vitamin B mixture (VITB), including vitamins B6, B9, and B12, for 20 weeks. VITB reduced the heart rate and circumference of the ascending aorta in Fbn1C1039G/+ mice. Our data showed that the Mtr and Smad4 genes were suppressed in Fbn1C1039G/+ mice, while VITB treatment restored the expression of these genes to normal levels. Additionally, VITB restored canonical transforming-growth factor β (TGF-β) signaling and promoted Loxl1-mediated collagen maturation in aortic media. This study provides a potential method to attenuate the pathogenesis of MFS that may have a synergistic effect with drug treatments for MFS patients.


2014 ◽  
Vol 7 (1) ◽  
pp. 80-88 ◽  
Author(s):  
Rachel Morissette ◽  
Florian Schoenhoff ◽  
Zhi Xu ◽  
David A. Shilane ◽  
Benjamin F. Griswold ◽  
...  

2015 ◽  
Vol 1 (1) ◽  
pp. 51-66
Author(s):  
Pratiek N Matkar ◽  
Hao H Chen ◽  
Howard Leong-Poi ◽  
Krishna Kumar Singh

Marfan syndrome (MFS) is a relatively rare disease of the connective tissue that affects several organs of the body. Cardiovascular abnormalities such as aortic root dilatation and mitral valve prolapse are the two main life-threatening complications associated with MFS. The complete pathogenesis of MFS is yet unclear. However, fibrillin-1 (FBN1) gene mutations and mutations in the transforming growth factor-β (TGFβ) signaling pathway are the leading causes of this lethal disease. Detailed assessment based on several major and minor clinical manifestations has led to the evolution of different nosologies for MFS diagnoses with reliable accuracies. Nevertheless, heterogeneous disease advancement and overlapping clinical outcomes make MFS diagnosis challenging. Rapid strides in research and surgical avenues over the last two decades have improved the life expectancy and the quality of life of MFS patients remarkably. More specific diagnostic criteria have been established, novel therapeutic targets for pharmacotherapy have been identified and validated, and newer surgical techniques have been tested. Current research efforts are focusing on the identification of prognostic biomarkers, gene modifiers, drug targets, and surgical procedures. This review aims to provide a brief overview of these aspects associated with MFS. 


2018 ◽  
Vol 3 (2) ◽  
pp. 200-212 ◽  
Author(s):  
Brendan M Giles ◽  
Timothy T Underwood ◽  
Karim A Benhadji ◽  
Diana K S Nelson ◽  
Lisa M Grobeck ◽  
...  

Abstract Background The transforming growth factor β (TGF-β)–signaling pathway has emerged as a promising therapeutic target for many disease states including hepatocellular carcinoma (HCC). Because of the pleiotropic effects of this pathway, patient selection and monitoring may be important. TGF-β1 is the most prevalent isoform, and an assay to measure plasma levels of TGF-β1 would provide a rational biomarker to assist with patient selection. Therefore, the objective of this study was to analytically validate a colorimetric ELISA for the quantification of TGF-β1 in human plasma. Methods A colorimetric sandwich ELISA for TGF-β1 was analytically validated per Clinical and Laboratory Standards Institute protocols by assessment of precision, linearity, interfering substances, and stability. A reference range for plasma TGF-β1 was established for apparently healthy individuals and potential applicability was demonstrated in HCC patients. Results Precision was assessed for samples ranging from 633 to 10822 pg/mL, with total variance ranging from 28.4% to 7.2%. The assay was linear across the entire measuring range, and no interference of common blood components or similar molecules was observed. For apparently healthy individuals, the average TGF-β1 level was 1985 ± 1488 pg/mL compared to 4243 ± 2003 pg/mL for HCC patients. Additionally, the TGF-β1 level in plasma samples was demonstrated to be stable across all conditions tested, including multiple freeze–thaw cycles. Conclusions The ELISA described in this report is suitable for the quantification of TGF-β1 in human plasma and for investigational use in an approved clinical study.


2017 ◽  
Vol 8 (1) ◽  
pp. 61-66
Author(s):  
Andrey S Rudoy ◽  
Alexey M Uryvaev

Marfan syndrome - an inherited, autosomal dominant disease with an expected rate of 3-5/10 000 or fraction of 20-25% of new mutations, accompanied by violation of the connective tissue that occurs as a result of gene mutations FBN1, coding for the synthesis of fibrillin-1, performing the most important role in the modulation physiological bioavailability TGF-β (transforming growth factor-β). Prediction of aortic rupture is based on the identification of risk factors: family history, the absolute size of the aortic root, the rate of expansion of the aorta, which are based on the results of the history and techniques of imaging ultrasound, CT, MRI. At the same time there is a chance of developing aortic rupture under normal aortic root size and the absence of any risk factors, as well as after the prophylactic prosthetic aortic root. This makes it necessary to search for alternative prognostic markers, threatening bundle and rupture of the aorta. Article verified the predictive role of TGF-β as a serological biomarker for assessing the extension of the aortic root in patients with Marfan syndrome (n = 23, F : M / 7 : 16; 33 ± 9.3 years). The article describes the patterns between TGF-β and the size and the reconstruction of the aneurysm of the thoracic aorta. It was found that elevated levels of serum TGF-β1 (49.1 ng/ml Vs 29.15 ng/ml in the control, p < 0.05) in patients with MS diagnosed with an extension of the aortic root (Z > 1.96) can serve as a serological marker to poor prognosis, accompanied by an increase in the size of the aortic root. In patients with normal-sized aorta, and after aortic reconstruction serum TGFβ1 not elevated. Serum TGFβ may be a promising target for therapeutic, diagnostic and prognostic tactics which are not based on imaging techniques.


2014 ◽  
Vol 25 (2) ◽  
pp. 365-367 ◽  
Author(s):  
Takaya Hoashi ◽  
Isao Shiraishi ◽  
Hajime Ichikawa

AbstractA 21-year-old man underwent mitral valve replacement and tricuspid annuloplasty for severe mitral regurgitation and moderate tricuspid regurgitation. Until the operation, he had been treated for hypermobility type Ehlers–Danlos syndrome. Gene examination revealed a mutation in filamin A gene, which is the gene responsible for X-linked myxomatous valvular dystrophy.


2018 ◽  
Vol 10 (1) ◽  
pp. 107
Author(s):  
S. Zarka ◽  
A. Rossi ◽  
S. Abouth ◽  
M. Frank ◽  
G. Goudot ◽  
...  

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Lai-Ming Yung ◽  
Samuel D Paskin-Flerlage ◽  
Ivana Nikolic ◽  
Scott Pearsall ◽  
Ravindra Kumar ◽  
...  

Introduction: Excessive Transforming Growth Factor-β (TGF-β) signaling has been implicated in pulmonary arterial hypertension (PAH), based on activation of TGF-β effectors and transcriptional targets in affected lungs and the ability of TGF-β type I receptor (ALK5) inhibitors to improve experimental PAH. However, clinical use of ALK5 inhibitors has been limited by cardiovascular toxicity. Hypothesis: We tested whether or not selective blockade of TGF-β and Growth Differentiation Factor (GDF) ligands using a recombinant TGFβ type II receptor extracellular domain Fc fusion protein (TGFBRII-Fc) could impact experimental PAH. Methods: Male SD rats were injected with monocrotaline (MCT) and received vehicle or TGFBRII-Fc (15 mg/kg, twice per week, i.p.). C57BL/6 mice were treated with SU-5416 and hypoxia (SUGEN-HX) and received vehicle or TGFBRII-Fc. RNA-Seq was used to profile transcriptional changes in lungs of MCT rats. Circulating levels of GDF-15 were measured in 241 PAH patients and 41 healthy controls. Human pulmonary artery smooth muscle cells were used to examine signaling in vitro . Results: TGFBRII-Fc is a selective ligand trap, inhibiting the ability of GDF-15, TGF-β1, TGF-β3, but not TGF-β2 to activate SMAD2/3 in vitro . In MCT rats, prophylactic treatment with TGFBRII-Fc normalized expression of TGF-β transcriptional target PAI-1, attenuated PAH and vascular remodeling. Delayed administration of TGFBRII-Fc in rats with established PAH at 2.5 weeks led to improved survival, decreased PAH and remodeling at 5 weeks. Similar findings were observed in SUGEN-HX mice. No valvular abnormalities were found with TGFBRII-Fc treatment. RNA-Seq revealed GDF-15 to be the most highly upregulated TGF-β ligand in the lungs of MCT rats, with only modest increases in TGF-β1 and no change in TGF-β2/3 observed, suggesting a dominant role of GDF-15 in the pathophysiology of this model. Plasma levels of GDF-15 were significantly increased in patients with diverse etiologies of WHO Group I PAH. Conclusions: These findings demonstrate that a selective TGF-β/GDF-15 trap attenuates experimental PAH, remodeling and mortality, without causing valvulopathy. These data highlight the potential role of GDF-15 as a pathogenic molecule and therapeutic target in PAH.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaolin Ni ◽  
Chenxi Jin ◽  
Yan Jiang ◽  
Ou Wang ◽  
Mei Li ◽  
...  

Abstract Background Kyphoscoliotic Ehlers-Danlos syndrome (kEDS) is a rare autosomal recessive connective tissue disorder characterized by progressive kyphoscoliosis, congenital muscular hypotonia, marked joint hypermobility, and severe skin hyperextensibility and fragility. Deficiency of lysyl hydroxylase 1 (LH1) due to mutations of PLOD1 (procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1) gene has been identified as the pathogenic cause of kEDS (kEDS-PLOD1). Up to now, kEDS-PLOD1 has not been reported among Chinese population. Case presentation A 17-year-old Chinese male patient presenting with hypotonia, joint hypermobility and scoliosis was referred to our hospital. After birth, he was found to have severe hypotonia leading to delayed motor development. Subsequently, joint hypermobility, kyphoscoliosis and amblyopia were found. Inguinal hernia was found at age 5 years and closed by surgery. At the same time, he presented with hyperextensible and bruisable velvety skin with widened atrophic scarring after minor trauma. Dislocation of elbow joint was noted at age of 6 years. Orthopedic surgery for correction of kyphoscoliosis was performed at age 10 years. His family history was unremarkable. Physical examination revealed elevated blood pressure. Slight facial dysmorphologies including high palate, epicanthal folds, and down-slanting palpebral fissures were found. He also had blue sclerae with normal hearing. X-rays revealed severe degree of scoliosis and osteopenia. The Echocardiography findings were normal. Laboratory examination revealed a slightly elevated bone turnover. Based on the clinical manifestations presented by our patient, kEDS was suspected. Genetic analysis revealed a novel homozygous missense mutation of PLOD1 (c.1697 G > A, p.C566Y), confirming the diagnosis of kEDS-PLOD1. The patient was treated with alfacalcidol and nifedipine. Improved physical strength and normal blood pressure were reported after 12-month follow-up. Conclusions This is the first case of kEDS-PLOD1 of Chinese origin. We identified one novel mutation of PLOD1, extending the mutation spectrum of PLOD1. Diagnosis of kEDS-PLOD1 should be considered in patients with congenital hypotonia, progressive kyphoscoliosis, joint hypermobility, and skin hyperextensibility and confirmed by mutation analysis of PLOD1.


Sign in / Sign up

Export Citation Format

Share Document