scholarly journals Distribution of heavy metals in cutover peat bog soils

2019 ◽  
Vol 8 (3) ◽  
pp. 63-69
Author(s):  
Elena Sergeevna Novosyolova ◽  
Lyudmila Nikolaevna Shikhova ◽  
Evgeny Mikhailovich Lisitsin

The paper contains the research results on content of total and mobile heavy metals compounds (lead, cadmium, copper, and zinc) in soils of the cutover peat bog Zenginsky located in the central part of the Kirov Region. As a result of the conducted researches it is revealed that the content of elements in different peat layers in control site (zinc - up to 2,60; copper - up to 0,90; lead - up to 5,60; cadmium - up to 0,59 mg/kg of soil) does not exceed the level of their maximum-permissible concentration and background contents in soils of the Kirov Region. For the undeveloped site the increased content of total and mobile compounds of the studied metals in the top layers is noted; it can be caused by biogenous accumulation of these elements by plants. The developed soils (the drained sites) are characterized by considerable fluctuations of elements content both in different profiles, and in the different layers of the same profile. Here the maximum content of elements in separate layers is much higher than control (zinc - up to 126,0; copper - up to 34,0; lead - up to 17,0; cadmium - up to 1,2 mg/kg of soil). Economic use of the peat bogs leads to an active mineralization of the top part of the remained peat mass. As a result of these processes stability of biogeochemical cycles of separate elements is broken. At the same time, the received data allow to consider soils of control sites as indicators of surrounding environment condition. The good safety of peat deposits gives the opportunity to study processes of accumulation and migration of chemical elements.

2021 ◽  
pp. 20-28
Author(s):  
Bartłomiej Igliński ◽  
Anna Iglińska ◽  
Urszula Kiełkowska ◽  
Dariusz Kamiński ◽  
Grzegorz Piechota

The metal content was determined using the WD-XRF method in the peat from the Wąpiersk bog and the Las Nadwelski bog (Welski Landscape Park, Poland). The results of the study show that the concentration of metals, especially heavy metals in peat bogs in Welski Landscape Park is low in general. In both bogs, the concentration of heavy metals was lower in the center than on the border. This shows that heavy metals are absorbed by the peat at the border and their further migration is limited. There are more elements such as iron, calcium and magnesium in the Las Nadwelski bog. There is more light on the border of the forest, which also plays an important role in decomposing plant debris, releasing metals. Heavy metals content was higher in Wąpiersk bog – a bog with higher anthropopressure. To sum up, the peat bog actively captures heavy metals, immobilizing them, and acts as a kind of “filter”. Peat is a good agent for retrospective monitoring of metals migration and accumulation in the environment.


2007 ◽  
Vol 29 (-1) ◽  
pp. 23-43 ◽  
Author(s):  
Krystyna Bałaga

Transformation of Lake Ecosystem into Peat Bog and Vegetation History Based on Durne Bagno Mire (Lublin Polesie, E Poland)In this paper, the history of Durne Bagno, i.e. the largest peat bog in the Lublin Polesie, is shown. Peat bogs are a unique element of the Polesie landscape. They occur mostly in the subregion of the Łęczna-Włodawa Lake District occupying 1.07% of its area. They fill basin-shaped depressions without outflow, often in the immediate vicinity of dystrophic lakes. Based on interdisciplinary research, the changes of vegetation cover and the Durne Bagno lake-mire ecosystem in the Late Glacial and Holocene are presented. The environmental conditions are reconstructed from pollen analysis, detailed identification of algae ofPediastrumgenus and chemical composition of deposits, together with the results of Cladocera analysis. The distribution of archaeological artefacts in the surroundings of Durne Bagno peat bog gives the view on the intensity of settlement in this area. The duration of the limnic and mire stages during the development of the ecosystem was different in different parts of the examined depression. In its central part the limnic stage lasted about 8000 years and included the period from the Late Glacial to the middle Holocene (to about 6000 BP). It is represented by 7 pollen zones and 6 chemical zones. The mire stage contained a part the Atlantic period and on the Subboreal and Subatlantic periods. It is represented by 4 pollen zones and 5 chemical zones. Limnic and mire deposits differ widely in the concentrations of chemical elements. The contents of mineral material and almost all analyzed elements in limnic deposits are high. These deposits are characterized by positive correlation between the contents of Zn and Cr and the frequency of Cladocera fauna. Peat contains very low amount of mineral material. The contents of Ca, Sr and Ba are rather high in sedgemoss peat. The concentrations of these elements decrease upwards due to oligotrophic processes and sedentation of sedge-Eriophorum-Sphagnumpeat. Peat succession was modified by pastoral economy of prehistoric man.


Author(s):  
Владимир Андреевич Даувальтер ◽  
Николай Александрович Кашулин ◽  
Vladimir Dauvalter ◽  
Nikolai Kashulin

2011 ◽  
Vol 75 (2) ◽  
pp. 157-163
Author(s):  
Iuliana F. Gheorghe ◽  
Cristina M. Vâlcu ◽  
Ion Barbu ◽  
Sorana Ţopa

Practices currently employed in the investigation and characterisation of peat deposits are destructive and may irremediable perturb peat bog development even in cases when exploitation is not carried out. We investigated the correlation between vegetation characteristics in the active area of Poiana Ştampei peat bog, Romania, and the underlying peat layer depth, aiming at establishing a non-destructive method of peat layer depth estimation. The presence of the <em>Sphagneto-Eriophoretum</em> vaginati association, dominated by <em>Sphagnum fimbriatum</em>, <em>Eriophorum vaginatum</em>, <em>Andromeda polifolia</em>, <em>Vaccinium oxycoccos</em>, <em>V. myrtillus</em>, <em>V. vitis-idaea</em>, <em>Polytrichum commune</em>, <em>Picea excelsa</em>, <em>Pinus sylvestris</em> and <em>Betula verrucosa</em> was found to predict the existence of the peat layer but not its depth. Out of the seven identified vegetation types, one type was associated with a very thin or no peat layer, one type was characterised by the presence of a thick (over 100 cm) peat layer and five types indicated the presence of variable average depths of the peat layer. pH values correlated with peat layer depth only within the vegetation type associated with thick peat layers.


Author(s):  
Svetlana Punanova

This research considered the content of trace elements (TE), including potentially toxic elements (PTE) in shale plays and deposits in various regions of the world. Their comparative analysis was carried out and the highest concentrations of PTE in the shales of some regions were revealed. The author notes that the destruction of organometallic compounds occurs during the development of shale hydrocarbon (HC) using horizontal drilling with hydraulic fracturing – injecting large volumes of chemicals while increasing the temperature. During such destruction processes, PTE can escape into the environment: into groundwater, soil layers, and other objects of economic use, and also deteriorate well equipment. In connection with the noted environmental hazards present during the development of shale HC, this paper proposes to monitor the content of TE in both shale rocks as well as in extracted shale oil in order to mitigate the risks of their release into the environment. In addition, developers and scientists should consider the losses of industrially significant volumes of valuable metals that occur due to the lack of cost-effective technologies for their capture and extraction from naphthides.


2021 ◽  
Vol 52 (6) ◽  
pp. 1334-1345
Author(s):  
V. I. Lopushniak ◽  
H. M. Hrytsuliak

This study was aimed to investigate  the ability of Jerusalem artichokes (Helianthus tuberous L.) to absorb heavy metals in an oil-contaminated ecosystem.  The research was carried out in a  territory of the oil and gas pipeline  at the village of  Bytkiv of Nadvirna district.  Jerusalem artichokes were used for this study and planted on an area of 25 m2.  The area of the experimental field in the village of  Maidan of Tysmenytsia district (control option № 1).  A total of eight treatments of the experiment with different rates of sewage sludge.  It is established that the concentration of heavy metals in oil-contaminated soil and Jerusalem artichoke plants increases with increasing the amount of fertilizers in the soil. The maximum content of metals in the tested soils, green mass and Jerusalem artichoke roots was observed  mainly in the variant of sewage sludge application at the rate of 40 t/ha and fertilizer N10P14K58.The green mass and roots of Jerusalem artichoke exhibited the highest content  of heavy metals absorption the transition coefficients of metals in the system "roots - green mass" increase in the following : Pb → Co → Ni → Cd.  The coefficients of biological absorption of metals by Jerusalem artichoke increase in a number of elements: Co  → Ni → Ld → Ca. Where as  The coefficients of biological accumulation of heavy metals with Jerusalem artichoke increase in a number of elements following series : L → Co → Ni → Ca. It is recommended to use Jerusalem artichoke as a phytoremediator of man-made areas.


Sign in / Sign up

Export Citation Format

Share Document