scholarly journals Adventitious coastal-aquatic and aquatic plants - indicators of global climate warming

2021 ◽  
Vol 10 (3) ◽  
pp. 117-121
Author(s):  
Vera Valentinovna Solovieva

The paper describes the habitats of Vallisneria spiralis L., Impatiens glandulifera Royle, Pistia stratiotes L. discovered in recent years within the Samara Region. A brief review of the papers devoted to the migration activity of these plant species on the territory of the Russian Federation and the Volga basin is given. Impatiens glandulifera Royle is an annual hygrophyte. In the flora of the Samara Region it was first noted among local coastal plants in 2004 on one of the ponds of Samara on Mirnaya Street. The plant entered the reservoir from the adjacent garden plots of the private sector. Pistia stratiotes L. is an aquatic plant. In the flora of the Samara Region, a pistia was first found on September 17, 2006 in a city pond (near School № 154 of Samara) among thickets of Elodea canadensis Michx. and Typha latifolia L. growing at a depth of up to 50 cm. Vallisneria spiralis L. was first discovered within the Samara Region in September 2020. Long-term monitoring of the distribution of coastal-aquatic and aquatic macrophytes-migrants in the Middle Volga basin will allow us to more confidently attribute them to possible indicators of global and local climate warming and one of the examples when aquatic plant species move from south to north within the Volga basin.

2017 ◽  
Vol 12 (3) ◽  
pp. 628-632
Author(s):  
Ganesh Shanker Mishra ◽  
Abhishek James ◽  
H.B. Paliwal ◽  
Hemant Kumar

Present study is directed towards the analysis of the water quality of the Macferson Lake, Allahabad which is heavily polluted by human activity. The required water samples collected rendomly from different locations of the study area and analyzed in the department of Environmental Sciences and NRM, SHUATS, Allahabad. The Temperature, EC, pH, TDS, Turbidity, Total hardness, Mg Hardness, Ca Hardness, BOD, DO, Alkalinity, Chloride, and Total coliform of the water samples have been analyzed. To assess the quality of the water each parameter was compared with the standard prescribed by Central pollution control board (CPCB, 2012). It is found that the Water hyacinth and Typha latifolia aquatic plant species were showing higher dominancy over the Macferson Lake. Both are covering the maximum surface water area of the lake. It is also found that receives species like Lemna minor, Sagitaria latifolia and Hydro-cotyle ranunculoids are found in a very less quantity and restricted to limited areas of the Lake. The findings of the present study help in multi-dimensional aspects and uses water of aforesaid lake including domestic purpose.


1994 ◽  
Vol 29 (4) ◽  
pp. 241-247 ◽  
Author(s):  
J. A. Moore ◽  
S. M. Skarda ◽  
R. Sherwood

Ten wetland ponds, each 1430 m2 (1/3 acre) in area are being utilized to evaluate the treatment of wastewater from a pulp mill. The ponds are being operated at a depth of 46 cm (18″) and detention times are 2 and 10 days. Six of the ponds have been planted to cattails (Typha latifolia) and three to bulrush (Scirpus acutus). One of the ponds is filled with large (150 mm) stone to compare a subsurface non-plant system. In 24 stock tanks, 8 aquatic plant species (Cattail, Hardstem Bulrush, Bolander's Rush, Common Spike Rush, Water Mannagrass, Beaked Sedge, Water Parsley and Yellow Pond Lily) are being grown to evaluate the effect of plants in the wetland treatment of wastewater. These same species are being evaluated in a larger area for competitiveness and hardiness in the wastewater. The ponds were planted in the winter of 1990/91. Results of this work on treatment of biochemical oxygen demand, solids and colour removal will be reported. Removals are in the range of 55%, 70% and less than 5% for the three parameters, respectively.


2017 ◽  
Vol 144 ◽  
pp. 1-10 ◽  
Author(s):  
Morgane Gillard ◽  
Gabrielle Thiébaut ◽  
Nicolas Rossignol ◽  
Solenne Berardocco ◽  
Carole Deleu

2019 ◽  
Vol 5 (4) ◽  
pp. 73-82
Author(s):  
I.A. Artemov ◽  
E. Yu. Zykova

In the Altaiskiy and Katunskiy State Nature Biosphere Reserves we registered 44 alien plant species, which were considered in Siberia as invasive and potentially invasive. Among them, there were 30 xenophytes and 14 ergasiophytes species. Rumex acetosella L., Impatiens glandulifera Royle, Galinsoga ciliata (Rafin.) Blake, and Strophiostoma sparsiflorum (Mikan ex Pohl) Turcz. are considered invasive in the Altaiskiy Reserve because they actively spread there in natural and seminatural plant communities and habitats. Most of the species had appeared in the territories of the reserves before their establishment as a result of agricultural activity or appeared after their establishment because of activity of the reserves themselves. Despite of a big amount of tourists in the reserves, the invasive and potentially invasive plants are absent on the ecological paths at present.


Plant Disease ◽  
2021 ◽  
Author(s):  
Natasha L. Bell ◽  
Steven N. Jeffers ◽  
Daniel R. Hitchcock ◽  
Sarah A. White

Investigations of the susceptibility of aquatic plants to species of Phytophthora are limited. Therefore, the objective of this study was to assess the potential susceptibility of six aquatic plant species, frequently used in constructed wetlands or vegetated channels, to infection by five species of Phytophthora commonly found at nurseries in the southeastern United States. In a greenhouse experiment, roots of each plant species (Agrostis alba, Carex stricta, Iris ensata ‘Rising Sun’, Panicum virgatum, Pontederia cordata, and Typha latifolia) growing in aqueous solutions were exposed to zoospores of each of the species of Phytophthora (P. cinnamomi, P. citrophthora, P. cryptogea, P. nicotianae, and P. palmivora). Zoospore presence and activity in solution were monitored using a standard baiting bioassay with rhododendron leaf disks as baits. Experiments were initiated in 2016 and repeated in 2017 and 2018. During the 2016 trials, Phytophthora spp. were not isolated from the roots of any of the plants, but some roots of C. stricta, P. virgatum, and T. latifolia were infected with multiple species of Phytophthora during trials in 2017 and 2018. Presence of plant roots reduced the percentage of rhododendron leaf disks infected by zoospores of four of the species of Phytophthora, but not those infected by P. cinnamomi, which suggested that roots of these plants negatively affected the presence or activity of zoospores of these four species of Phytophthora in the aqueous growing solution. Results from this study demonstrated that certain aquatic plant species may serve as sources of inoculum at ornamental plant nurseries if these plants are present naturally in waterways or used in constructed wetlands treating water flowing off production areas, which could be of concern to plant producers who recycle irrigation water.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3849
Author(s):  
Olesia Havryliuk ◽  
Vira Hovorukha ◽  
Oleksandr Savitsky ◽  
Volodymyr Trilis ◽  
Antonina Kalinichenko ◽  
...  

The aquatic plant Pistia stratiotes L. is environmentally hazardous and requires effective methods for its utilization. The harmfulness of these plants is determined by their excessive growth in water bodies and degradation of local aquatic ecosystems. Mechanical removal of these plants is widespread but requires fairly resource-intensive technology. However, these aquatic plants are polymer-containing substrates and have a great potential for conversion into bioenergy. The aim of the work was to determine the main patterns of Pistia stratiotes L. degradation via granular microbial preparation (GMP) to obtain biomethane gas while simultaneously detoxifying toxic copper compounds. The composition of the gas phase was determined via gas chromatography. The pH and redox potential parameters were determined potentiometrically, and Cu(II) concentration photocolorimetrically. Applying the preparation, high efficiency of biomethane fermentation of aquatic plants and Cu(II) detoxification were achieved. Biomethane yield reached 68.0 ± 11.1 L/kg VS of Pistia stratiotes L. biomass. The plants’ weight was decreased by 9 times. The Cu(II) was completely removed after 3 and 10 days of fermentation from initial concentrations of 100 ppm and 200 ppm, respectively. The result confirms the possibility of using the GMP to obtain biomethane from environmentally hazardous substrates and detoxify copper-contaminated fluids.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 988
Author(s):  
Charlotte Descamps ◽  
Najet Boubnan ◽  
Anne-Laure Jacquemart ◽  
Muriel Quinet

Drought and higher temperatures caused by climate change are common stress conditions affecting plant growth and development. The reproductive phase is particularly sensitive to stress, but plants also need to allocate their limited resources to produce floral traits and resources to attract pollinators. We investigated the physiological and floral consequences of abiotic stress during the flowering period of Impatiens glandulifera, a bee-pollinated species. Plants were exposed to three temperatures (21, 24, 27 °C) and two watering regimes (well-watered, water stress) for 3 weeks. Not all parameters measured responded in the same manner to drought and/or heat stress. Drought stress induced leaf senescence, decreasing leaf number by 15–30% depending on growth temperature. Drought also reduced photosynthetic output, while temperature rise affected stomatal conductance. The number of flowers produced dropped 40–90% in response to drought stress, while higher temperatures shortened flower life span. Both stresses affected floral traits, but flower resources diminished in response to higher temperatures, with lower nectar volume and pollen protein content. We conclude that increased temperatures and drought stress, which are becoming more frequent with climate change, can negatively affect flowering, even if plants deploy physiological resistance strategies.


Weed Science ◽  
2021 ◽  
pp. 1-21
Author(s):  
Erika J. Haug ◽  
Khalied A. Ahmed ◽  
Travis W. Gannon ◽  
Rob J. Richardson

Abstract Additional active ingredients are needed for use in aquatic systems in order to respond to new threats or treatment scenarios, enhance selectivity, reduce use rates, and to mitigate the risk of herbicide-resistance. Florpyrauxifen-benzyl is a new synthetic auxin developed for use as an aquatic herbicide. A study was conducted at North Carolina State University, in which 10 µg L−1 of 25% radiolabeled florpyrauxifen-benzyl was applied to the isolated shoot tissue of ten different aquatic plant species in order to elucidate absorption and translocation patterns in these species. Extremely high levels of shoot absorption were observed for all species and uptake was rapid. Highest shoot absorptions were observed for crested floatingheart [Nymphoides cristata (Roxb.) Kuntze] (A192 =20 µg g−1), dioecious hydrilla [Hydrilla verticillata (L.f.) Royle] (A192 =25.3 µg g−1), variable watermilfoil (Myriophyllum heterophylum Michx.) (A192 =40.1 µg g−1) and Eurasian watermilfoil (Myriophyllum spicatum L.) (A192 =25.3 µg g−1). Evidence of translocation was observed in all rooted species tested with the greatest translocation observed in N. cristata (1.28 µg g-1 at 192 HAT). The results of this study add to the growing body of knowledge surrounding the behavior of this newly registered herbicide within aquatic plants.


Author(s):  
Elise Sipeniece ◽  
Inga Mišina ◽  
Ying Qian ◽  
Anna Grygier ◽  
Natalia Sobieszczańska ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 741
Author(s):  
Rocío Fernández-Zamudio ◽  
Pablo García-Murillo ◽  
Carmen Díaz-Paniagua

In temporary ponds, seed germination largely determines how well aquatic plant assemblages recover after dry periods. Some aquatic plants have terrestrial morphotypes that can produce seeds even in dry years. Here, we performed an experiment to compare germination patterns for seeds produced by aquatic and terrestrial morphotypes of Ranunculus peltatus subsp. saniculifolius over the course of five inundation events. During the first inundation event, percent germination was higher for terrestrial morphotype seeds (36.1%) than for aquatic morphotype seeds (6.1%). Seed germination peaked for both groups during the second inundation event (terrestrial morphotype: 47%; aquatic morphotype: 34%). Even after all five events, some viable seeds had not yet germinated (terrestrial morphotype: 0.6%; aquatic morphotype: 5%). We also compared germination patterns for the two morphotypes in Callitriche brutia: the percent germination was higher for terrestrial morphotype seeds (79.5%) than for aquatic morphotype seeds (41.9%). Both aquatic plant species use two complementary strategies to ensure population persistence despite the unpredictable conditions of temporary ponds. First, plants can produce seeds with different dormancy periods that germinate during different inundation periods. Second, plants can produce terrestrial morphotypes, which generate more seeds during dry periods, allowing for re-establishment when conditions are once again favorable.


Sign in / Sign up

Export Citation Format

Share Document