A Parametric Investigation of Near‐Fault Ground Strains and Rotations Using Finite‐Fault Simulations

2019 ◽  
Vol 109 (5) ◽  
pp. 1758-1784 ◽  
Author(s):  
Yenan Cao ◽  
George P. Mavroeidis

Abstract Although previous studies have performed finite‐fault simulations of actual or hypothetical earthquakes to generate time histories of near‐fault ground strains and rotations, no systematic attempt has been made to assess the sensitivity of these motions to variations in seismic source parameters (e.g., fault type, magnitude, rupture velocity, slip velocity, hypocenter location, burial depth). Such a parametric investigation is presented in this article by generating time histories of ground strains and rotations at near‐fault stations and at a dense grid of observation points extending over the causative fault for a suite of hypothetical strike‐slip and dip‐slip earthquakes. The simulation results show that strike‐slip earthquakes produce large shear strain and torsion, whereas dip‐slip earthquakes generate large axial strain and rocking. The time histories of specific components of displacement gradient, strain, and rotation at near‐fault stations may be estimated from those of ground velocities using a simple scaling relation, whereas peak rotational motions in the near‐fault region may be reasonably estimated from peak translational motions using a properly selected scaling factor. The parametric analysis results show that near‐fault ground strains and rotations exhibit strong sensitivity to variations in rupture velocity, slip velocity, and burial depth, whereas a change in hypocenter location significantly alters the spatial distributions of peak ground strains (PGSs) and rotations (PGRs). The presence of a low‐velocity surface layer increases the amplitude and duration of ground strains and rotations, whereas their static offsets are also amplified. Distinct attenuation characteristics are observed for PGSs and PGRs depending on the component of interest, the earthquake magnitude, and the rupture distance. Finally, the spatial distributions of PGSs and PGRs obtained from a stochastically generated variable slip distribution are overall similar to those obtained from a tapered uniform slip distribution, whereas the spatial distributions of the respective static offsets differ significantly.

1994 ◽  
Vol 84 (3) ◽  
pp. 668-691 ◽  
Author(s):  
David J. Wald ◽  
Thomas H. Heaton

Abstract We have determined a source rupture model for the 1992 Landers earthquake (MW 7.2) compatible with multiple data sets, spanning a frequency range from zero to 0.5 Hz. Geodetic survey displacements, near-field and regional strong motions, broadband teleseismic waveforms, and surface offset measurements have been used explicitly to constrain both the spatial and temporal slip variations along the model fault surface. Our fault parameterization involves a variable-slip, multiple-segment, finite-fault model which treats the diverse data sets in a self-consistent manner, allowing them to be inverted both independently and in unison. The high-quality data available for the Landers earthquake provide an unprecedented opportunity for direct comparison of rupture models determined from independent data sets that sample both a wide frequency range and a diverse spatial station orientation with respect to the earthquake slip and radiation pattern. In all models, consistent features include the following: (1) similar overall dislocation patterns and amplitudes with seismic moments of 7 to 8 × 1026 dyne-cm (seismic potency of 2.3 to 2.7 km3); (2) very heterogeneous, unilateral strike slip distributed over a fault length of 65 km and over a width of at least 15 km, though slip is limited to shallower regions in some areas; (3) a total rupture duration of 24 sec and an average rupture velocity of 2.7 km/sec; and (4) substantial variations of slip with depth relative to measured surface offsets. The extended rupture length and duration of the Landers earthquake also allowed imaging of the propagating rupture front with better resolution than for those of prior shorter-duration, strike-slip events. Our imaging allows visualization of the rupture evolution, including local differences in slip durations and variations in rupture velocity. Rupture velocity decreases markedly at shallow depths, as well as near regions of slip transfer from one fault segment to the next, as rupture propagates northwestward along the multiply segmented fault length. The rupture front slows as it reaches the northern limit of the Johnson Valley/Landers faults where slip is transferred to the southern Homestead Valley fault; an abrupt acceleration is apparent following the transfer. This process is repeated, and is more pronounced, as slip is again passed from the northern Homestead Valley fault to the Emerson fault. Although the largest surface offsets were observed at the northern end of the rupture, our modeling indicates that substantial rupture was also relatively shallow (less than 10 km) in this region.


Author(s):  
Xiang Chen ◽  
Hongfeng Yang ◽  
Mingpei Jin

Abstract To better assess potential earthquake hazards requires a better understanding of fault friction and rupture dynamics. Critical slip-weakening distance (Dc) as one of the key friction parameters, however, is hard to determine on natural faults. For strike-slip earthquakes, we may directly estimate the Dc from Dc″—the double near-fault ground displacement at the time of the peak velocity (Fukuyama and Mikumo, 2007). Yet near-fault observations are very few, and, thus, there were only limited earthquakes with such Dc″ estimation. In 2014, an Mw 6.2 strike-slip event—the Ludian earthquake—occurred in southwest China. The strong-motion station (LLT) that is ∼0.45  km from the fault recorded the earthquake and enabled us to estimate Dc″ from the accelerograms. We inspect the polarity of the accelerometers and compare the integrated velocities with waveforms of nearby broadband stations. We also analyze the particle motion at the LLT station and retrieve the earthquake initiation at the intersection of the conjugated faults. We then apply the baseline correction to the seismograms, recover the ground velocities and displacements, and obtain the value of Dc″=0.1  m at the station. The recovered final displacements are compared with the predicted ground displacements of a finite-fault model. The discrepancy of fault-parallel displacements might imply limited underestimation of Dc″, and the estimated upper limit is 0.3 m. Comparison between the Dc″ and final slip on the fault patch follows the scaling of previous larger earthquakes. Analysis of the near-fault accelerometer data enhances our understanding on the earthquake source of the Ludian earthquake. This case extends the lower magnitude boundary of the Dc″ values obtained from natural faults and opens a window into the friction property in the seismically active region.


2010 ◽  
Vol 02 (02) ◽  
pp. 193-215 ◽  
Author(s):  
S. T. G. RAGHU KANTH

In this paper, empirical mode decomposition technique is used to analyze the spatial slip distribution of five past earthquakes. It is shown that the finite fault slip models exhibit five empirical modes of oscillation. The last intrinsic mode is positive and characterizes the non-stationary mean of the slip distribution. This helps in splitting the spatial variability of slip into trend and the remaining modes sum as the fluctuation in the data. The fluctuation component indicates that it can be modeled as an anisotropic random field. Important parameters of this random field have been estimated. The effect of these modes on ground motion is presented by simulating both acceleration and displacement time histories.


2017 ◽  
Author(s):  
Sarah A. Harbert ◽  
◽  
Alison R. Duvall ◽  
Gregory E. Tucker

2021 ◽  
Author(s):  
Deniz Ertuncay ◽  
Giovanni Costa

AbstractNear-fault ground motions may contain impulse behavior on velocity records. To calculate the probability of occurrence of the impulsive signals, a large dataset is collected from various national data providers and strong motion databases. The dataset has a large number of parameters which carry information on the earthquake physics, ruptured faults, ground motion parameters, distance between the station and several parts of the ruptured fault. Relation between the parameters and impulsive signals is calculated. It is found that fault type, moment magnitude, distance and azimuth between a site of interest and the surface projection of the ruptured fault are correlated with the impulsiveness of the signals. Separate models are created for strike-slip faults and non-strike-slip faults by using multivariate naïve Bayes classifier method. Naïve Bayes classifier allows us to have the probability of observing impulsive signals. The models have comparable accuracy rates, and they are more consistent on different fault types with respect to previous studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Gao ◽  
HuRong Duan ◽  
YongZhi Zhang ◽  
JiaYing Chen ◽  
HeTing Jian ◽  
...  

AbstractThe 2019 Ridgecrest, California seismic sequence, including an Mw6.4 foreshock and Mw7.1 mainshock, represent the largest regional seismic events within the past 20 years. To obtain accurate coseismic fault-slip distribution, we used precise positioning data of small earthquakes from January 2019 to October 2020 to determine the dip parameters of the eight fault geometry, and used the Interferometric Synthetic Aperture Radar (InSAR) data processed by Xu et al. (Seismol Res Lett 91(4):1979–1985, 2020) at UCSD to constrain inversion of the fault-slip distribution of both earthquakes. The results showed that all faults were sinistral strike-slips with minor dip-slip components, exception for dextral strike-slip fault F2. Fault-slip mainly occurred at depths of 0–12 km, with a maximum slip of 3.0 m. The F1 fault contained two slip peaks located at 2 km of fault S4 and 6 km of fault S5 depth, the latter being located directly above the Mw7.1hypocenter. Two slip peaks with maximum slip of 1.5 m located 8 and 20 km from the SW endpoint of the F2 fault were also identified, and the latter corresponds to the Mw6.4 earthquake. We also analyzed the influence of different inversion parameters on the fault slip distribution, and found that the slip momentum smoothing condition was more suitable for the inversion of the earthquakes slip distribution than the stress-drop smoothing condition.


1990 ◽  
Vol 80 (3) ◽  
pp. 507-518 ◽  
Author(s):  
Jim Mori ◽  
Stephen Hartzell

Abstract We examined short-period P waves to investigate if waveform data could be used to determine which of two nodal planes was the actual fault plane for a small (ML 4.6) earthquake near Upland, California. We removed path and site complications by choosing a small aftershock (ML 2.7) as an empirical Green function. The main shock P waves were deconvolved by using the empirical Green function to produce simple far-field displacement pulses. We used a least-squares method to invert these pulses for the slip distribution on a finite fault. Both nodal planes (strike 125°, dip 85° and strike 221°, dip 40°) of the first-motion focal mechanism were tested at various rupture velocities. The southwest trending fault plane consistently gave better fitting solutions than the southeast-trending plane. We determined a moment of 4.2 × 1022 dyne-cm. The rupture velocity, and thus the source area could not be well resolved, but if we assume a reasonable rupture velocity of 0.87 times the shear wave velocity, we obtain a source area of 0.97 km2 and a stress drop of 38 bars. Choice of a southwest-trending fault plane is consistent with the trend of the nearby portion of the Transverse Ranges frontal fault zone and indicates left-lateral motion. This method provides a way to determine the fault plane for small earthquakes that have no surface rupture and no obvious trend in aftershock locations.


1982 ◽  
Vol 72 (5) ◽  
pp. 1717-1738 ◽  
Author(s):  
Michel Bouchon ◽  
Keiiti Aki

abstract In the absence of near-field records of differential ground motion induced by earthquakes, we simulate the time histories of strain, tilt, and rotation in the vicinity of earthquake faults embedded in layered media. We consider the case of both strike-slip and dip-slip fault models and study the effect of different crustal structures. The maximum rotational motion produced by a buried 30-km-long strike-slip fault with slip of 1 m is of the order of 3 × 10−4 rad while the corresponding rotational velocity is about 1.5 × 10−3 rad/sec. A simulation of the San Fernando earthquake yields maximum longitudinal strain and tilt a few kilometers from the fault of the order of 8 × 10−4 and 7 × 10−4 rad. These values being small compared to the amplitude of ground displacement, the results suggest that most of the damage occurring in earthquakes is caused by translation motions. We also show that strain and tilt are closely related to ground velocity and that the phase velocities associated with strong ground motions are controlled by the rupture velocity and the basement rock shearwave velocity.


2021 ◽  
Author(s):  
Figen Eskikoy ◽  
Semih Ergintav ◽  
Uğur Dogan ◽  
Seda Özarpacı ◽  
Alpay Özdemir ◽  
...  

<p>On 2020 October 30, an M<sub>w</sub>6.9 earthquake struck offshore Samos Island. Severe structural damages were observed in Greek Islands and city of Izmir (Turkey). 114 people lost their lives and more than a thousand people were injured in Turkey. The earthquake triggered local tsunami. Significant seismic activity occurred in this region following the earthquake and ~1800 aftershocks (M>1) were recorded by KOERI within the first three days. In this study, we analyze the slip distribution and aftershocks of the 2020 earthquake.</p><p>For the aftershock relocations, the continuous waveforms were collected from NOA, Disaster and Emergency Management Authority of Turkey (AFAD) and KOERI networks. The database   was created based on merged catalogs from AFAD and KOERI. For estimating optimized aftershock location distribution, the P and S phases of the aftershocks are picked manually and relocated with double difference algorithm. In addition, source mechanisms of aftershocks M>4 are obtained from regional body and surface waveforms.</p><p>The surface deformation of the earthquake was obtained from both descending and ascending orbits of the Sentinel-1 A/B and ALOS2 satellites. Since the rupture zone is beneath the Gulf of Kusadası, earthquake related deformation in the interferograms can only be observed on the northern part of the Samos Island. We processed all possible pairs chose the image pairs with the lowest noise level.</p><p>In this study, we used 25 continuous GPS stations which are compiled from TUSAGA-Aktif in Turkey and NOANET in Greece. In addition to continuous GPS data, on 2020 November 1, GPS survey was initiated and the earthquake deformation was measured on 10 GNSS campaign sites (TUTGA), along onshore of Turkey.</p><p>The aim of this study is to estimate the spatial and temporal rupture evolution of the earthquake from geodetic data jointly with near field displacement waveforms. To do so, we use the Bayesian Earthquake Analysis Tool (BEAT).</p><p>As a first step of the study, rectangular source parameters were estimated by using GPS data. In order to estimate the slip distribution, we used both ascending and descending tracks of Sentinel-1 data, ALOS2 and GPS displacements. In our preliminary geodetic data based finite fault model, we used the results of focal mechanism and GPS data inversion solutions for the initial fault plane parameters. The slip distribution results indicate that earthquake rupture is ~35 km long and the maximum slip is ~2 m normal slip along a north dipping fault plane. This EW trending, ~45° north dipping normal faulting system consistent with this tectonic regime in the region. This seismically active area is part of a N-S extensional regime and controlled primarily by normal fault systems.</p><p><strong>Acknowledgements</strong></p><p>This work is supported by the Turkish Directorate of Strategy and Budget under the TAM Project number 2007K12-873.</p>


2017 ◽  
Vol 50 (3) ◽  
pp. 1583
Author(s):  
V. Saltogianni ◽  
M. Gianniou ◽  
T. Taymaz ◽  
S. Yolsal-Çevikbilen ◽  
S. Stiros

A strong earthquake (Mw 6.9) on 24 May 2014 ruptured the North Aegean Trough (NAT) in Greece, west of the North Anatolian Fault Zone (NAFZ). In order to provide unbiased constrains of the rupture process and fault geometry of the earthquake, seismological and geodetic data were analyzed independently. First, based on teleseismic long-period P- and SH- waveforms a point-source solution yielded dominantly right-lateral strike-slip faulting mechanism. Furthermore, finite fault inversion of broad-band data revealed the slip history of the earthquake. Second, GPS slip vectors derived from 11 permanent GPS stations uniformly distributed around the meizoseismal area of the earthquake indicated significant horizontal coseismic slip. Inversion of GPS-derived displacements on the basis of Okada model and using the new TOPological INVersion (TOPINV) algorithm permitted to model a vertical strike slip fault, consistent with that derived from seismological data. Obtained results are consistent with the NAT structure and constrain well the fault geometry and the dynamics of the 2014 earthquake. The latter seems to fill a gap in seismicity along the NAT in the last 50 years, but seems not to have a direct relationship with the sequence of recent faulting farther east, along the NAFZ.


Sign in / Sign up

Export Citation Format

Share Document