Characteristics of Current-Induced Harmonic Tremor Signals in Ocean-Bottom Seismometer Records

Author(s):  
David Essing ◽  
Vera Schlindwein ◽  
Mechita C. Schmidt-Aursch ◽  
Celine Hadziioannou ◽  
Simon C. Stähler

Abstract Long-lasting harmonic tremor signals are frequently observed in spectrograms of seismological data. Natural sources, such as volcanoes and icebergs, or artificial sources, such as ships and helicopters, produce very similar harmonic tremor episodes. Ocean-bottom seismometer (OBS) records may additionally be contaminated by tremor induced by ocean-bottom currents acting on the OBS structure. This harmonic tremor noise may severely hinder earthquake detection and can be misinterpreted as volcanic tremor. In a 160-km-long network of 27 OBSs deployed for 1 yr along the Knipovich ridge in the Greenland Sea, harmonic tremor was widely observed away from natural sources such as volcanoes. Based on this network, we present a systematic analysis of the characteristics of hydrodynamically induced harmonic tremor in OBS records to make it distinguishable from natural tremor sources and reveal its generation processes. We apply an algorithm that detects harmonic tremor and extracts time series of its fundamental frequency and spectral amplitude. Tremor episodes typically occur twice per day, starting with fundamental frequencies of 0.5–1.0 Hz, and show three distinct stages that are characterized by frequency-gliding, mode-locking, and large spectral amplitudes, respectively. We propose that ocean-bottom currents larger than ∼5  cm/s cause rhythmical Karman vortex shedding around protruding structures of the OBS and excite eigenvibrations. Head-buoy strumming is the most likely source of the dominant tremor signal, whereas a distinctly different tremor signal with a fundamental frequency ∼6  Hz may be related to eigenvibrations of the radio antenna. Ocean-bottom current velocities reconstructed from the fundamental tremor frequency and from cross correlation of tremor time series between stations match observed average current velocities of 14–20  cm/s in this region. The tremor signal periodicity shows the same tidal constituents as the forcing ocean-bottom currents, which is a further evidence of the hydrodynamic nature of the tremor.

Geophysics ◽  
1975 ◽  
Vol 40 (3) ◽  
pp. 411-425 ◽  
Author(s):  
Gerard J. Fryer ◽  
Mark E. Odegard ◽  
George H. Sutton

Least‐squares, zero‐lag inverse filters may be used for predictive deconvolution of stationary time series and for obtaining autoregressive or maximum entropy spectral estimates. The greatest problem in finding such an inverse filter is determining the optimum operator length for a given finite length of data. The identical problem of determining the correct order of an autoregressive model for the data has been solved by Akaike, whose final prediction error (FPE) statistic is a minimum for the optimum length model. This minimum FPE criterion may be applied to both single and multiple time series. The FPE procedure has been used successfully on simultaneous three‐component seismometer and hydrophone data for the detection of refracted arrivals from explosions up to 1350 km away and for estimation of spectra of microseismic noise observed at the time of each shot. The data were recorded with an ocean bottom seismometer.


Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. F19-F30 ◽  
Author(s):  
Lars Krieger ◽  
Francesco Grigoli

One of the most critical problems affecting geophysical data acquisition procedures is related to the misorientation of multicomponent sensors with respect to a common reference system (e.g., geographic north). In many applications, misoriented sensors affect data analysis procedures, leading to errors in results and interpretations. These problems generally occur in applications where the orientation of the sensor cannot be actively controlled and is not known a priori, e.g., geophysical sensors deployed in borehole installations or on the seafloor. We have developed a quaternion-based method for the optimal reorientation of multicomponent geophysical sensors. In contrast to other approaches, we took into account the full time-series record from all sensor components. Therefore, our method could be applied to all time-series data and was not restricted to a certain type of geophysical sensor. Our method allows the robust calculation of relative reorientations between two-component or three-component sensors. By using a reference sensor in an iterative process, this result can be extended to the estimation of absolute sensor orientations. In addition to finding an optimal solution for a full 3D sensor rotation, we have established a rigorous scheme for the estimation of uncertainties of the resulting orientation parameters. We tested the feasibility and applicability of our method using synthetic data examples for a vertical seismic profile and an ocean bottom seismometer array. We noted that the quaternion-based reorientation method is superior to the standard approach of a single-parameter estimation of rotation angles.


2020 ◽  
Author(s):  
Martina Hollstein ◽  
Annemiek Vink ◽  
Katja Schmidt ◽  
Niko Lahajnar ◽  
Andreas Lückge ◽  
...  

<p>The globally increasing demand for metals and rare earth elements has raised the interest for potential mining of deep-sea mineral resources such as polymetallic nodules. One important field of polymetallic nodules is located within the Clarion-Clipperton Fracture Zone (CCZ) in the northeastern equatorial Pacific. To date, the International Seabed Authority (ISA) has granted 25 licenses for the exploration of polymetallic nodules in the CCZ. However, the impact of potential future mining activities on the deep-sea environment is only insufficiently known. To assess the environmental impacts of potential future mining activities, a nodule pre-prototype collector test is scheduled to occur in the German license area within the CCZ in autumn 2020, and will be accompanied by an extensive environmental monitoring program (joint effort between BGR and the European research project JPI-Oceans “MiningImpact2”). However, to assess the environmental impact of mining activities, for example due to the development of an operational sediment plume on the seafloor, prior knowledge on the bottom current regime and variability of particle flux and composition within the CCZ under natural conditions is a prerequisite. In order to analyze the bottom current regime and background particle fluxes, BGR deployed Ocean Bottom Moorings (OBM) equipped with current and turbidity meters (4 years between 2013 and 2019), and a sediment trap (2018-2019). Here, we present preliminary results and analyses of these oceanographic and sedimentological time-series data, and compare the results with other available information deriving from the region.</p>


2021 ◽  
Vol 13 (7) ◽  
pp. 1242
Author(s):  
Hakan S. Kutoglu ◽  
Kazimierz Becek

The Mediterranean Ridge accretionary complex (MAC) is a product of the convergence of Africa–Europe–Aegean plates. As a result, the region exhibits a continuous mass change (horizontal/vertical movements) that generates earthquakes. Over the last 50 years, approximately 430 earthquakes with M ≥ 5, including 36 M ≥ 6 earthquakes, have been recorded in the region. This study aims to link the ocean bottom deformations manifested through ocean bottom pressure variations with the earthquakes’ time series. To this end, we investigated the time series of the ocean bottom pressure (OBP) anomalies derived from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) satellite missions. The OBP time series comprises a decreasing trend in addition to 1.02, 1.52, 4.27, and 10.66-year periodic components, which can be explained by atmosphere, oceans, and hydrosphere (AOH) processes, the Earth’s pole movement, solar activity, and core–mantle coupling. It can be inferred from the results that the OBP anomalies time series/mass change is linked to a rising trend and periods in the earthquakes’ energy time series. Based on this preliminary work, ocean-bottom pressure variation appears to be a promising lead for further research.


1981 ◽  
Vol 71 (5) ◽  
pp. 1649-1659
Author(s):  
Thomas M. Brocher ◽  
Brian T. Iwatake ◽  
Joseph F. Gettrust ◽  
George H. Sutton ◽  
L. Neil Frazer

abstract The pressures and particle velocities of sediment-borne signals were recorded over a 9-day period by an array of telemetered ocean-bottom seismometers positioned on the continental margin off Nova Scotia. The telemetered ocean-bottom seismometer packages, which appear to have been very well coupled to the sediments, contained three orthogonal geophones and a hydrophone. The bandwidth of all sensors was 1 to 30 Hz. Analysis of the refraction data shows that the vertical geophones have the best S/N ratio for the sediment-borne signals at all recording depths (67, 140, and 1301 m) and nearly all ranges. The S/N ratio increases with increasing sensor depth for equivalent weather conditions. Stoneley and Love waves detected on the Scotian shelf (67-m depth) are efficient modes for the propagation of noise.


1974 ◽  
Vol 64 (4) ◽  
pp. 1251-1262
Author(s):  
William A. Prothero

abstract An ocean-bottom seismometer capsule containing a 1-Hz vertical seismometer and triggered digital recording system has been developed and tested off the coast of San Diego. The output of the seismometer is continuously digitized at 64, 128, or 256 samples per second. The digital data is mixed with a time code and passed through a 256 sample shift register which acts as a delay line. It is then mixed with synchronization characters, serialized, encoded, and recorded on a SONY TC800B tape recorder which is turned on when a seismic event occurs. The event trigger occurs when the seismic signal jumps to at least twice the time-averaged input signal. Data are recovered using the same recorder for playback and a decoder which provides an analog output for field data interpretation or a digital output for computer analysis. The capsule itself falls freely to the ocean bottom. After a predetermined time it is released from a 150-lb steel tripod and floats to the surface. A dual timer and explosive bolt system provides a high recovery reliability. A number of seismic events have been measured in field tests and the system has proven to be extremely simple to check out, diagnose, and deploy.


Author(s):  
Jui-Chun Freya Chen ◽  
Wu-Cheng Chi ◽  
Chu-Fang Yang

Abstract Developing new ways to observe tsunami contributes to tsunami research. Tidal and deep-ocean gauges are typically used for coastal and offshore observations. Recently, tsunami-induced ground tilts offer a new possibility. The ground tilt signal accompanied by 2010 Mw 8.8 Chilean earthquake were observed at a tiltmeter network in Japan. However, tiltmeter stations are usually not as widely installed as broadband seismometers in other countries. Here, we studied broadband seismic records from Japan’s F-net and found ground tilt signals consistent with previously published tiltmeter dataset for this particular tsunamic event. Similar waveforms can also be found in broadband seismic networks in other countries, such as Taiwan, as well as an ocean-bottom seismometer. We documented a consistent time sequence of evolving back-azimuth directions of the tsunami waves at different stages of tsunami propagation through beamforming-frequency–wavenumber analysis and particle-motion analysis; the outcomes are consistent with the tsunami propagation model provided by the Pacific Tsunami Warning Center. These results shown that dense broadband seismic networks can provide a useful complementary dataset, in addition to tiltmeter arrays and other networks, to study or even monitor tsunami propagation using arrayed methods.


2016 ◽  
Vol 59 (2) ◽  
Author(s):  
Mauro Coltelli ◽  
Danilo Cavallaro ◽  
Giuseppe D’Anna ◽  
Antonino D’Alessandro ◽  
Fausto Grassa ◽  
...  

<p>In the Sicily Channel, volcanic activity has been concentrated mainly on the Pantelleria and Linosa islands, while minor submarine volcanism took place in the Adventure, Graham and Nameless banks. The volcanic activity spanned mostly during Plio-Pleistocene, however, historical submarine eruptions occurred in 1831 on the Graham Bank and in 1891 offshore Pantelleria Island. On the Graham Bank, 25 miles SW of Sciacca, the 1831 eruption formed the short-lived Ferdinandea Island that represents the only Italian volcano active in historical times currently almost completely unknown and not yet monitored. Moreover, most of the Sicily Channel seismicity is concentrated along a broad NS belt extending from the Graham Bank to Lampedusa Island. In 2012, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) carried out a multidisciplinary oceanographic cruise, named “Ferdinandea 2012”, the preliminary results of which represent the aim of this paper. The cruise goal was the mapping of the morpho-structural features of some submarine volcanic centres located in the northwestern side of the Sicily Channel and the temporary recording of their seismic and degassing activity. During the cruise, three OBS/Hs (ocean bottom seismometer with hydrophone) were deployed near the Graham, Nerita and Terribile submarine banks. During the following 9 months they have recorded several seismo-acoustic signals produced by both tectonic and volcanic sources. A high-resolution bathymetric survey was achieved on the Graham Bank and on the surrounding submarine volcanic centres. A widespread and voluminous gas bubbles emission was observed by both multibeam sonar echoes and a ROV (remotely operated vehicle) along the NW side of the Graham Bank, where gas and seafloor samples were also collected.</p>


Sign in / Sign up

Export Citation Format

Share Document