Uncertainties in Seismic Moment Tensors Inferred from Differences between Global Catalogs

Author(s):  
Boris Rösler ◽  
Seth Stein ◽  
Bruce D. Spencer

Abstract Catalogs of moment tensors form the foundation for a wide variety of seismological studies. However, assessing uncertainties in the moment tensors and the quantities derived from them is difficult. To gain insight, we compare 5000 moment tensors in the U.S. Geological Survey (USGS) and the Global Centroid Moment Tensor (Global CMT) Project catalogs for November 2015–December 2020 and use the differences to illustrate the uncertainties. The differences are typically an order of magnitude larger than the reported errors, suggesting that the errors substantially underestimate the uncertainty. The catalogs are generally consistent, with intriguing differences. Global CMT generally reports larger scalar moments than USGS, with the difference decreasing with magnitude. This difference is larger than and of the opposite sign from what is expected due to the different definitions of the scalar moment. Instead, the differences are intrinsic to the tensors, presumably in part due to different phases used in the inversions. The differences in double-couple components of source mechanisms and the fault angles derived from them decrease with magnitude. Non-double-couple (NDC) components decrease somewhat with magnitude. These components are moderately correlated between catalogs, with correlations stronger for larger earthquakes. Hence, small earthquakes often show large NDC components, but many have large uncertainties and are likely to be artifacts of the inversion. Conversely, larger earthquakes are less likely to have large NDC components, but these components are typically robust between catalogs. If so, these can indicate either true deviation from a double couple or source complexity. The differences between catalogs in scalar moment, source geometry, or NDC fraction of individual earthquakes are essentially uncorrelated, suggesting that the differences reflect the inversion rather than the source process. Despite the differences in moment tensors, the location and depth of the centroids are consistent between catalogs. Our results apply to earthquakes after 2012, before which many moment tensors were common to both catalogs.

2021 ◽  
Author(s):  
Boris Rösler ◽  
Seth Stein

<p>Catalogs of moment tensors form the foundation for a wide variety of studies in seismology. Despite their importance, assessing the uncertainties in the moment tensors and the quantities derived from them is difficult. To gain insight,<span>  </span>we compare 5000 moment tensors in catalogs of the USGS and the Global CMT Project for the period from September 2015 to December 2020. The GCMT Project generally reports larger scalar moments than the USGS, with the difference between the reported moments decreasing with magnitude. The effect of the different definitions of the scalar moment between catalogs, reflecting treatment of the non-double-couple component, is consistent with that expected. However, this effect is small and has a sign opposite to the differences in reported scalar moment. Hence the differences are intrinsic to the moment tensors in the two catalogs. The differences in the deviation from a double-couple source and in source geometry derived from the moment tensors also decrease with magnitude. The deviations from a double-couple source inferred from the two catalogs are moderately correlated, with the correlation stronger for larger deviations. However, we do not observe the expected correlation between the deviation from a double-couple source and the resulting differences in scalar moment due to the different definitions. There is essentially no correlation between the differences in source geometry, scalar moment, or fraction of the non-double-couple component, suggesting that the differences reflect aspects of the inversion rather than the source process. Despite the differences in moment tensors, the reported location and depth of the centroids are consistent between catalogs.</p>


1983 ◽  
Vol 73 (2) ◽  
pp. 419-434
Author(s):  
Jeffery S. Barker ◽  
Charles A. Langston

abstract Teleseismic P-wave first motions for the M ≧ 6 earthquakes near Mammoth Lakes, California, are inconsistent with the vertical strike-slip mechanisms determined from local and regional P-wave first motions. Combining these data sets allows three possible mechanisms: a north-striking, east-dipping strike-slip fault; a NE-striking oblique fault; and a NNW-striking normal fault. Inversion of long-period teleseismic P and SH waves for the events of 25 May 1980 (1633 UTC) and 27 May 1980 (1450 UTC) yields moment tensors with large non-double-couple components. The moment tensor for the first event may be decomposed into a major double couple with strike = 18°, dip = 61°, and rake = −15°, and a minor double couple with strike = 303°, dip = 43°, and rake = 224°. A similar decomposition for the last event yields strike = 25°, dip = 65°, rake = −6°, and strike = 312°, dip = 37°, and rake = 232°. Although the inversions were performed on only a few teleseismic body waves, the radiation patterns of the moment tensors are consistent with most of the P-wave first motion polarities at local, regional, and teleseismic distances. The stress axes inferred from the moment tensors are consistent with N65°E extension determined by geodetic measurements by Savage et al. (1981). Seismic moments computed from the moment tensors are 1.87 × 1025 dyne-cm for the 25 May 1980 (1633 UTC) event and 1.03 × 1025 dyne-cm for the 27 May 1980 (1450 UTC) event. The non-double-couple aspect of the moment tensors and the inability to obtain a convergent solution for the 25 May 1980 (1944 UTC) event may indicate that the assumptions of a point source and plane-layered structure implicit in the moment tensor inversion are not entirely valid for the Mammoth Lakes earthquakes.


2021 ◽  
Author(s):  
Álvaro González

<p>Statistical seismology relies on earthquake catalogs as homogeneous and complete as possible. However, heterogeneities in earthquake data compilation and reporting are common and frequently are not adverted.</p><p>The Global Centroid Moment Tensor Catalog (www.globalcmt.org) is considered as the most homogeneous global database for large and moderate earthquakes occurred since 1976, and it has been used for developing and testing global and regional forecast models.</p><p>Changes in the method used for calculating the moment tensors (along with improvements in global seismological monitoring) define four eras in the catalog (1976, 1977-1985, 1986-2003 and 2004-present). Improvements are particularly stark since 2004, when intermediate-period surface waves started to be used for calculating the centroid solutions.</p><p>Fixed centroid depths, used when the solution for a free depth did not converge, have followed diverse criteria, depending on the era. Depth had to be fixed mainly for shallow earthquakes, so this issue is more common, e.g. in the shallow parts of subduction zones than in the deep ones. Until 2003, 53% of the centroids had depths calculated as a free parameter, compared to 78% since 2004.</p><p>Rake values have not been calculated homogenously either. Until 2003, the vertical-dip-slip components of the moment tensor were assumed as null when they could not be constrained by the inversion (for 3.3% of the earthquakes). This caused an excess of pure focal mechanisms: rakes of -90° (normal), 0° or ±180° (strike-slip) or +90° (thrust). Even disregarding such events, rake histograms until 2003 and since 2004 are not equivalent to each other.</p><p>The magnitude of completeness (<em>M</em><sub>c</sub>) of the catalog is analyzed here separately for each era. It clearly improved along time (average <em>M</em><sub>c</sub> values being ~6.4 in 1976, ~5.7 in 1977-1985, ~5.4 in 1986-2003, and ~5.0 since 2004). Maps of <em>M</em><sub>c</sub> for different eras show significant spatial variations.</p>


2019 ◽  
Vol 220 (1) ◽  
pp. 218-234 ◽  
Author(s):  
Xin Wang ◽  
Zhongwen Zhan

SUMMARY Earthquake focal mechanisms put primary control on the distribution of ground motion, and also bear on the stress state of the crust. Most routine focal mechanism catalogues still use 1-D velocity models in inversions, which may introduce large uncertainties in regions with strong lateral velocity heterogeneities. In this study, we develop an automated waveform-based inversion approach to determine the moment tensors of small-to-medium-sized earthquakes using 3-D velocity models. We apply our approach in the Los Angeles region to produce a new moment tensor catalogue with a completeness of ML ≥ 3.5. The inversions using the Southern California Earthquake Center Community Velocity Model (3D CVM-S4.26) significantly reduces the moment tensor uncertainties, mainly owing to the accuracy of the 3-D velocity model in predicting both the phases and the amplitudes of the observed seismograms. By comparing the full moment tensor solutions obtained using 1-D and 3-D velocity models, we show that the percentages of non-double-couple components decrease dramatically with the usage of 3-D velocity model, suggesting that large fractions of non-double-couple components from 1-D inversions are artifacts caused by unmodelled 3-D velocity structures. The new catalogue also features more accurate focal depths and moment magnitudes. Our highly accurate, efficient and automatic inversion approach can be expanded in other regions, and can be easily implemented in near real-time system.


2019 ◽  
Vol 109 (6) ◽  
pp. 2415-2426
Author(s):  
Çağrı Diner

Abstract Full moment tensor inversion has become a standard method for understanding the mechanisms of earthquakes as the resolution of the inversion process increases. Thus, it is important to know the possible forms of non–double‐couple (non‐DC) moment tensors, which can be obtained because of either the different source mechanisms or the anisotropy of the focal regions. In this study, the form of the moment tensors of seismic sources occurring in transversely isotropic (TI) focal regions is obtained using the eigendecomposition of the elasticity tensor. More precisely, a moment tensor is obtained as a linear combination of the eigenspaces of TI elasticity tensor in which the coefficients of the terms are the corresponding eigenvalues multiplied with the projection of the potency tensor onto the corresponding eigenspaces. Moreover, the eigendecomposition method is also applied to obtain the three different forms of moment tensors in isotropic focal regions, in particular, for the shear source, tensile source, and for any type of potency tensor whose rank is three. This linear algebra point of view makes the structure of the moment tensors more apparent; for example, a shear source tensor is an eigenvector of isotropic elasticity tensor, and hence the resulting moment tensor is proportional to its shear source tensor. Moreover, a geometric interpretation for the scalar seismic moment, which is the norm of the moment tensor, for anisotropic focal regions is achieved through the eigendecomposition method. This method also gives a simple way to quantify the percentage of the isotropic component of the moment tensor of shear sources in TI focal regions. Hence, the complexities in the moment tensor introduced by the anisotropy of the focal region and by the source mechanism can be differentiated.


1999 ◽  
Vol 89 (5) ◽  
pp. 1390-1394 ◽  
Author(s):  
David Bowers ◽  
John A. Hudson

Abstract We compare several published definitions of the scalar moment M0, a measure of the size of a seismic disturbance derived from the second-order seismic moment tensor M (with eigenvalues m1 ≥ m3 ≥ m2). While arbitrary, a useful definition is in terms of a total moment, MT0 = MI + MD, where MI = |M|, with M = (m1 + m2 + m3)/3, is the isotropic moment, and MD = max(|mj − M|; j = 1, 2, 3), is the deviatoric moment. This definition is consistent with other definitions of M0 if M is a double couple. This definition also gives physically appealing and simple results for the explosion and crack sources. Furthermore, our definitions of MT0, MI and MD are in accord with the parameterization of the moment tensor into a deviatoric part (represented by T which lies in [−1,1]) and a volumetric part (represented by k which lies in [−1, 1]) proposed by Hudson et al. (1989).


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. KS207-KS217 ◽  
Author(s):  
Jeremy D. Pesicek ◽  
Konrad Cieślik ◽  
Marc-André Lambert ◽  
Pedro Carrillo ◽  
Brad Birkelo

We have determined source mechanisms for nine high-quality microseismic events induced during hydraulic fracturing of the Montney Shale in Canada. Seismic data were recorded using a dense regularly spaced grid of sensors at the surface. The design and geometry of the survey are such that the recorded P-wave amplitudes essentially map the upper focal hemisphere, allowing the source mechanism to be interpreted directly from the data. Given the inherent difficulties of computing reliable moment tensors (MTs) from high-frequency microseismic data, the surface amplitude and polarity maps provide important additional confirmation of the source mechanisms. This is especially critical when interpreting non-shear source processes, which are notoriously susceptible to artifacts due to incomplete or inaccurate source modeling. We have found that most of the nine events contain significant non-double-couple (DC) components, as evident in the surface amplitude data and the resulting MT models. Furthermore, we found that source models that are constrained to be purely shear do not explain the data for most events. Thus, even though non-DC components of MTs can often be attributed to modeling artifacts, we argue that they are required by the data in some cases, and can be reliably computed and confidently interpreted under favorable conditions.


1996 ◽  
Vol 86 (5) ◽  
pp. 1255-1269 ◽  
Author(s):  
Michael E. Pasyanos ◽  
Douglas S. Dreger ◽  
Barbara Romanowicz

Abstract Recent advances in broadband station coverage, continuous telemetry systems, moment-tensor procedures, and computer data-processing methods have given us the opportunity to automate the two regional moment-tensor methods employed at the UC Berkeley Seismographic Station for events in northern and central California. Preliminary solutions are available within minutes after an event has occurred and are subsequently human reviewed. We compare the solutions of the two methods to each other, as well as the automatic and revised solutions of each individual method. Efforts are being made to establish robust criteria for determining accurate solutions with human review and to fully automate the moment-tensor procedures into the already-existing automated earthquake-location system.


1982 ◽  
Vol 72 (2) ◽  
pp. 439-456
Author(s):  
Thorne Lay ◽  
Jeffrey W. Given ◽  
Hiroo Kanamori

Abstract The seismic moment and source orientation of the 8 November 1980 Eureka, California, earthquake (Ms = 7.2) are determined using long-period surface and body wave data obtained from the SRO, ASRO, and IDA networks. The favorable azimuthal distribution of the recording stations allows a well-constrained mechanism to be determined by a simultaneous moment tensor inversion of the Love and Rayleigh wave observations. The shallow depth of the event precludes determination of the full moment tensor, but constraining Mzx = Mzy = 0 and using a point source at 16-km depth gives a major double couple for period T = 256 sec with scalar moment M0 = 1.1 · 1027 dyne-cm and a left-lateral vertical strike-slip orientation trending N48.2°E. The choice of fault planes is made on the basis of the aftershock distribution. This solution is insensitive to the depth of the point source for depths less than 33 km. Using the moment tensor solution as a starting model, the Rayleigh and Love wave amplitude data alone are inverted in order to fine-tune the solution. This results in a slightly larger scalar moment of 1.28 · 1027 dyne-cm, but insignificant (<5°) changes in strike and dip. The rake is not well enough resolved to indicate significant variation from the pure strike-slip solution. Additional amplitude inversions of the surface waves at periods ranging from 75 to 512 sec yield a moment estimate of 1.3 ± 0.2 · 1027 dyne-cm, and a similar strike-slip fault orientation. The long-period P and SH waves recorded at SRO and ASRO stations are utilized to determine the seismic moment for 15- to 30-sec periods. A deconvolution algorithm developed by Kikuchi and Kanamori (1982) is used to determine the time function for the first 180 sec of the P and SH signals. The SH data are more stable and indicate a complex bilateral rupture with at least four subevents. The dominant first subevent has a moment of 6.4 · 1026 dyne-cm. Summing the moment of this and the next three subevents, all of which occur in the first 80 sec of rupture, yields a moment of 1.3 · 1027 dyne-cm. Thus, when the multiple source character of the body waves is taken into account, the seismic moment for the Eureka event throughout the period range 15 to 500 sec is 1.3 ± 0.2 · 1027 dyne-cm.


Author(s):  
Dana Křížová ◽  
Jiří Málek

Abstract West Bohemia is a region with a lot of mineral springs and gas outflows, which seems to be related to the remains of Quaternary volcanism in Central Europe. Earthquake swarms in shallow depths (less than 15 km) are very frequent there. We focused on the strongest earthquake over the past 30 yr (31 May, 2014 Mw∼3.8) and on two smaller ones (Mw∼2.9 and 2.5) from the same day. Seismograms from local and regional seismic stations were used to calculate the full and deviatoric moment tensors using low-frequency full-waveform inversion. The studied events have similar source mechanisms. The aforementioned earthquake sequence was selected to observe the isotropic part (negative value = implosion) of full moment tensors. It could relate to the motion and phase transition of fluids, especially water, and CO2. The main goal of this study is to contribute to clarification of the nature of earthquake swarms in the western edge of the Bohemian Massif. Negative value of the isotropic part of full moment tensor could be related to the closing of cracks and fissures during a rupture process.


Sign in / Sign up

Export Citation Format

Share Document