Focal Mechanisms of West Bohemia, Central Europe, Earthquakes—End of May 2014: Evidence of Volume Changes

Author(s):  
Dana Křížová ◽  
Jiří Málek

Abstract West Bohemia is a region with a lot of mineral springs and gas outflows, which seems to be related to the remains of Quaternary volcanism in Central Europe. Earthquake swarms in shallow depths (less than 15 km) are very frequent there. We focused on the strongest earthquake over the past 30 yr (31 May, 2014 Mw∼3.8) and on two smaller ones (Mw∼2.9 and 2.5) from the same day. Seismograms from local and regional seismic stations were used to calculate the full and deviatoric moment tensors using low-frequency full-waveform inversion. The studied events have similar source mechanisms. The aforementioned earthquake sequence was selected to observe the isotropic part (negative value = implosion) of full moment tensors. It could relate to the motion and phase transition of fluids, especially water, and CO2. The main goal of this study is to contribute to clarification of the nature of earthquake swarms in the western edge of the Bohemian Massif. Negative value of the isotropic part of full moment tensor could be related to the closing of cracks and fissures during a rupture process.


2020 ◽  
Vol 223 (1) ◽  
pp. 161-179
Author(s):  
S Donner ◽  
M Mustać ◽  
B Hejrani ◽  
H Tkalčić ◽  
H Igel

SUMMARY Seismic moment tensors are an important tool and input variable for many studies in the geosciences. The theory behind the determination of moment tensors is well established. They are routinely and (semi-) automatically calculated on a global scale. However, on regional and local scales, there are still several difficulties hampering the reliable retrieval of the full seismic moment tensor. In an earlier study, we showed that the waveform inversion for seismic moment tensors can benefit significantly when incorporating rotational ground motion in addition to the commonly used translational ground motion. In this study, we test, what is the best processing strategy with respect to the resolvability of the seismic moment tensor components: inverting three-component data with Green’s functions (GFs) based on a 3-D structural model, six-component data with GFs based on a 1-D model, or unleashing the full force of six-component data and GFs based on a 3-D model? As a reference case, we use the inversion based on three-component data and 1-D structure, which has been the most common practice in waveform inversion for moment tensors so far. Building on the same Bayesian approach as in our previous study, we invert synthetic waveforms for two test cases from the Korean Peninsula: one is the 2013 nuclear test of the Democratic People’s Republic of Korea and the other is an Mw  5.4 tectonic event of 2016 in the Republic of Korea using waveform data recorded on stations in Korea, China and Japan. For the Korean Peninsula, a very detailed 3-D velocity model is available. We show that for the tectonic event both, the 3-D structural model and the rotational ground motion, contribute strongly to the improved resolution of the seismic moment tensor. The higher the frequencies used for inversion, the higher is the influence of rotational ground motions. This is an important effect to consider when inverting waveforms from smaller magnitude events. The explosive source benefits more from the 3-D structural model than from the rotational ground motion. Nevertheless, the rotational ground motion can help to better constraint the isotropic part of the source in the higher frequency range.



By recording several components of tilt, strain and acceleration at one location, one can determine the focal mechanism, or moment tensor, of an earthquake. Alternatively, recordings made at several locations can be used. The moment tensor can be decomposed into its isotropic part and its deviatoric part. When the eigerrvalues of the deviator are in the sequence (— 1, 0, 1) the equivalent double couple can be found.



2021 ◽  
Author(s):  
Václav Vavryčuk ◽  
Petra Adamová ◽  
Jana Doubravová ◽  
Josef Horálek

Abstract. We present a unique catalogue of full moment tensors (MTs) of microearthquakes that occurred in West Bohemia, Czech Republic, in the period from 2008 to 2018. The catalogue is exceptional in several aspects: (1) it represents an extraordinary extensive dataset of more than 5.000 MTs, (2) it covers a long period of seismicity in the studied area, during which several prominent earthquake swarms took place, (3) the locations and retrieved MTs of microearthquakes are of a high accuracy. Additionally, we provide three-component records at the West Bohemia (WEBNET) seismic stations, the velocity model in the region, and the technical specification of the stations. The dataset is ideal for being utilized by a large community of researchers for various seismological purposes, e.g., for studies of (1) the migration of foci and the spatiotemporal evolution of seismicity, (2) redistribution of stress during periods of intense seismicity, (3) the interaction of faults, (4) the Coulomb stress along the faults and local stress anomalies connected to fault irregularities, (5) diffusivity of fluids along the activated faults, or (6) the time-dependent seismic risk due to the migration of seismicity in the region. In addition, the dataset is optimum for developing and testing new inversions for MTs and for tectonic stress. Since most of the earthquakes are non-shear, the dataset can contribute to studies of non-double-couple components of MTs and their relation to shear-tensile fracturing and/or seismic anisotropy in the focal zone.



2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Kasemsak Saetang

The focal mechanisms of Mw 6.3 aftershocks, Chiang Rai Province, Northern Thailand, were determined by using a multistation waveform inversion. Three aftershocks were selected and their waveforms were inverted for moment tensor calculation. Waveform inversions were derived from three broadband stations with three components and epicentral distances less than 250 km after all seismic stations were considered. The deviatoric moment tensor inversion was used for focal mechanism calculations. Band-pass filtering in the range of 0.03–0.15 Hz was selected for reducing low- and high-frequency noise. Source positions were created by using a single-source inversion and a grid-search method computed to optimize the waveform match. The results showed stable moment tensors and fault geometries with the southwest azimuth in the northern part of the Payao Fault Zone (PFZ) with depths shallower than 10 km. Left-lateral strike-slip with a reverse component was detected. The tectonics of the PFZ is constrained by fault-plane solutions of earthquakes. WSW directional strikes are observed in the northern part of the PFZ.



Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. WC5-WC15 ◽  
Author(s):  
Gillian R. Foulger ◽  
Bruce R. Julian

The high accuracies and realistic confidence assessments demanded for seismic monitoring of hydraulic fracturing work require specialist experimental approaches. These include seismic network design based on quantitative modeling, high-quality instrument deployments, and accurate and detailed crustal models. Confidence estimates must take into account uncertainties about crustal structure, which may dominate error budgets. Earthquake size should be expressed in terms of scalar seismic moment or the associated moment magnitude [Formula: see text], which is related to fundamental physical source processes, and not as traditional earthquake magnitudes. Representing earthquake mechanisms in terms of seismic moment tensors allows for processes such as volume changes and complex types of shearing that are important in hydrocarbon and geothermal reservoirs. Traditional fault-plane solutions are based on simplifying assumptions such as shear slip on a planar faults, and isotropic crustal structures, which may introduce large uncertainties. Quantitative assessment of confidence regions for moment-tensor source mechanisms, a newly emerging field, is important for distinguishing computational artifacts from real physical phenomena. We review methods currently available for realistic error estimation for earthquake locations and moment tensors, with particular emphasis on surface sensor arrays in geothermal areas.



Author(s):  
Boris Rösler ◽  
Seth Stein ◽  
Bruce D. Spencer

Abstract Catalogs of moment tensors form the foundation for a wide variety of seismological studies. However, assessing uncertainties in the moment tensors and the quantities derived from them is difficult. To gain insight, we compare 5000 moment tensors in the U.S. Geological Survey (USGS) and the Global Centroid Moment Tensor (Global CMT) Project catalogs for November 2015–December 2020 and use the differences to illustrate the uncertainties. The differences are typically an order of magnitude larger than the reported errors, suggesting that the errors substantially underestimate the uncertainty. The catalogs are generally consistent, with intriguing differences. Global CMT generally reports larger scalar moments than USGS, with the difference decreasing with magnitude. This difference is larger than and of the opposite sign from what is expected due to the different definitions of the scalar moment. Instead, the differences are intrinsic to the tensors, presumably in part due to different phases used in the inversions. The differences in double-couple components of source mechanisms and the fault angles derived from them decrease with magnitude. Non-double-couple (NDC) components decrease somewhat with magnitude. These components are moderately correlated between catalogs, with correlations stronger for larger earthquakes. Hence, small earthquakes often show large NDC components, but many have large uncertainties and are likely to be artifacts of the inversion. Conversely, larger earthquakes are less likely to have large NDC components, but these components are typically robust between catalogs. If so, these can indicate either true deviation from a double couple or source complexity. The differences between catalogs in scalar moment, source geometry, or NDC fraction of individual earthquakes are essentially uncorrelated, suggesting that the differences reflect the inversion rather than the source process. Despite the differences in moment tensors, the location and depth of the centroids are consistent between catalogs. Our results apply to earthquakes after 2012, before which many moment tensors were common to both catalogs.



2021 ◽  
Author(s):  
Stefanie Donner

Seismic moment tensors are an important tool in geosciences on all spatial scales and for a broad range of applications. The basic underlying theory is established since decades. However, various factors influence the reliability of the inversion result, several of them are mutually dependent. Hence, a reliable retrieval of seismic moment tensors is still hampered in many cases, especially at regional event-receiver distances.To sample the entire wavefield due to a seismic source we need six components: three translational and three rotational ones. Up to now, only translational ground motion recordings were used for moment tensor retrieval, missing out valuable information. Using rotational in addition to the classical translational ground motions during waveform inversion for moment tensors mainly adds information on the vertical displacement gradient to the inversion problem. Furthermore, having available six instead of only three components per receiver location provides additional constraints on the sampling of the radiation pattern. As a result, the moment tensor components are resolved with higher precision and accuracy, even when the number of recording receivers is considerably reduced. Especially, components with a dependence to depth as well as the centroid depth can benefit significantly from additional rotational ground motion. Up to the time of writing this review only a few studies are published on the topic. Here, I summarise their findings and provide an overview over the possible capabilities of including rotational ground motion measurements to waveform inversion for seismic moment tensor retrieval.





2021 ◽  
Vol 9 ◽  
Author(s):  
Alicja Caputa ◽  
Łukasz Rudziński ◽  
Simone Cesca

Underground exploitation of georesources can be highly correlated with induced seismic activity. In order to reduce the risk and improve the mining operations safety, the mining activity is monitored by a dedicated seismic network. Moment tensor inversion is a powerful method to investigate the rupture process of earthquakes in mines, providing information on the geometry of the earthquake source and the moment release. Different approaches have been proposed to estimate the source mechanisms, with some advantages and limitations. One of the simplest and most used methods rely on the fit of the polarity and amplitude of first P wave onsets. More advanced techniques fit the full waveforms and their spectra. Here, we test and compare moment tensor and focal mechanism estimations for both inversion techniques. In order to assess the inversion resolution, we built realistic synthetic data, accounting for real seismic noise conditions and network geometry for the Rudna copper mine, SW Poland. The Rudna mine pertains to the Legnica-Glógow Copper District, where thousands of mining induced earthquakes are detected yearly, representing a serious hazard for miners and mining infrastructures. We simulate a range of different processes and locations, considering pure double couple, deviatoric and full moment tensors with different magnitudes and located in different mining panels. Results show that the P-wave first onset inversion is very sensitive to the geometry of the seismic network, which is limited by the existing underground infrastructure. On the other hand, the quality of the moment tensor solutions for the full waveform inversion is mainly determined by the strength of mining tremor and the signal-to-noize ratio. We discuss the performance of both inversion techniques and provide recommendations toward a reliable moment tensor analysis in mines.



2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hijrah Saputra ◽  
Wahyudi Wahyudi ◽  
Iman Suardi ◽  
Ade Anggraini ◽  
Wiwit Suryanto

AbstractThis study comprehensively investigates the source mechanisms associated with the mainshock and aftershocks of the Mw = 6.3 Yogyakarta earthquake which occurred on May 27, 2006. The process involved using moment tensor inversion to determine the fault plane parameters and joint inversion which were further applied to understand the spatial and temporal slip distributions during the earthquake. Moreover, coseismal slip distribution was overlaid with the relocated aftershock distribution to determine the stress field variations around the tectonic area. Meanwhile, the moment tensor inversion made use of near-field data and its Green’s function was calculated using the extended reflectivity method while the joint inversion used near-field and teleseismic body wave data which were computed using the Kikuchi and Kanamori methods. These data were filtered through a trial-and-error method using a bandpass filter with frequency pairs and velocity models from several previous studies. Furthermore, the Akaike Bayesian Information Criterion (ABIC) method was applied to obtain more stable inversion results and different fault types were discovered. Strike–slip and dip-normal were recorded for the mainshock and similar types were recorded for the 8th aftershock while the 9th and 16th June were strike slips. However, the fault slip distribution from the joint inversion showed two asperities. The maximum slip was 0.78 m with the first asperity observed at 10 km south/north of the mainshock hypocenter. The source parameters discovered include total seismic moment M0 = 0.4311E + 19 (Nm) or Mw = 6.4 with a depth of 12 km and a duration of 28 s. The slip distribution overlaid with the aftershock distribution showed the tendency of the aftershock to occur around the asperities zone while a normal oblique focus mechanism was found using the joint inversion.



Sign in / Sign up

Export Citation Format

Share Document