Direct observation of rupture propagation during the 1979 Imperial Valley earthquake using a short baseline accelerometer array

1984 ◽  
Vol 74 (6) ◽  
pp. 2083-2114
Author(s):  
Paul Spudich ◽  
Edward Cranswick

Abstract The 1979 Imperial Valley, California, earthquake (Ms = 6.9) was recorded on the El Centro differential array, a 213-m-long linear array of 5 three-component digital accelerometers 5.6 km from the nearest tectonic surface rupture. Although absolute time was not recorded on the array elements, a relative time base was established using the main shock hypocentral P wave and the P and S waves from a later aftershock. A cross-correlation technique was used to measure the difference in arrival times of individual seismic waves in a moving 0.6 to 1.2 sec window at each array element, which would then be converted into the wave's slowness (1/velocity) along the array. When applied to the main shock vertical and horizontal accelerograms, results from both components of motion indicated that the early arriving energy came from a source to the south of the array, and the source of the energy moved rapidly to the north of the array during the strong shaking. The ground motions at the array elements were well correlated for about the first 11 sec of motion. These observations suggest that we have observed the initiation of rupture south of the array and its subsequent propagation along the fault to a position north of the array in about 10 sec, and that the energy was radiated from a fairly compact region around the rupture front. If the observed vertical and horizontal ground motions are assumed to be caused by P and S waves, respectively, then the observed slownesses show irregularities which can be interpreted as implying that the observed high-frequency ground motions originated at irregularly distributed regions on the fault surface, or that the rupture velocity was variable, or both. One possible interpretation of the data suggests that the rupture proceeded at near P-wave velocity over a 7-km-long section of fault. Average rupture velocities of about 2.7 to 3.2 km/sec at 8 km depth are consistent with the data, and 2.8 km/sec is weakly preferred under the assumption that rupture propagates at a fixed fraction of the shear velocity. The large vertical pulse, which had a peak acceleration of 1.7 g at E06, was emitted from the portion of the fault extending 25 to 30 km northwest of the hypocenter near Meloland overpass, and not from the point on the fault closest to the differential array. Nothing can be said about fault behavior southeast of the hypocenter.

1982 ◽  
Vol 72 (6A) ◽  
pp. 1957-1968
Author(s):  
Mansour Niazi

abstract Two sets of observations obtained during the 15 October 1979 Imperial Valley earthquake, MS 6.9, are presented. The data suggest different dynamic characteristics of the source when viewed in different frequency bands. The first data set consists of the observed residuals of the horizontal peak ground accelerations and particle velocity from predicted values within 50 km of the fault surface. The residuals are calculated from a nonlinear regression analysis of the data (Campbell, 1981) to the following empirical relationships, PGA = A 1 ( R + C 1 ) − d 1 , PGV = A 2 ( R + C 2 ) − d 2 in which R is the closest distance to the plane of rupture. The so-calculated residuals are correlated with a positive scalar factor signifying the focusing potential at each observation point. The focusing potential is determined on the basis of the geometrical relation of the station relative to the rupture front on the fault plane. The second data set consists of the acceleration directions derived from the windowed-time histories of the horizontal ground acceleration across the El Centro Differential Array (ECDA). The horizontal peak velocity residuals and the low-pass particle acceleration directions across ECDA require the fault rupture to propagate northwestward. The horizontal peak ground acceleration residuals and the high-frequency particle acceleration directions, however, are either inconclusive or suggest an opposite direction for rupture propagation. The inconsistency can best be explained to have resulted from the incoherence of the high-frequency radiation which contributes most effectively to the registration of PGA. A test for the sensitivity of the correlation procedure to the souce location is conducted by ascribing the observed strong ground shaking to a single asperity located 12 km northwest of the hypocenter. The resulting inconsistency between the peak acceleration and velocity observations in relation to the focusing potential is accentuated. The particle velocity of Delta Station, Mexico, in either case appears abnormally high and disagrees with other observations near the southeastern end of the fault trace. From the observation of a nearly continuous counterclockwise rotation of the plane of P-wave particle motion at ECDA, the average rupture velocity during the first several seconds of source activation is estimated to be 2.0 to 3.0 km/sec. A 3 km upper bound estimate of barrier dimensions is tentatively made on the basis of the observed quasiperiodic variation of the polarization angles.


Geophysics ◽  
2001 ◽  
Vol 66 (5) ◽  
pp. 1519-1527 ◽  
Author(s):  
Robert Sun ◽  
George A. McMechan

Reflected P‐to‐P and P‐to‐S converted seismic waves in a two‐component elastic common‐source gather generated with a P‐wave source in a two‐dimensional model can be imaged by two independent scalar reverse‐time depth migrations. The inputs to migration are pure P‐ and S‐waves that are extracted by divergence and curl calculations during (shallow) extrapolation of the elastic data recorded at the earth’s surface. For both P‐to‐P and P‐to‐S converted reflected waves, the imaging time at each point is the P‐wave traveltime from the source to that point. The extracted P‐wave is reverse‐time extrapolated and imaged with a P‐velocity model, using a finite difference solution of the scalar wave equation. The extracted S‐wave is reverse‐time extrapolated and imaged similarly, but with an S‐velocity model. Converted S‐wave data requires a polarity correction prior to migration to ensure constructive interference between data from adjacent sources. Synthetic examples show that the algorithm gives satisfactory results for laterally inhomogeneous models.


2020 ◽  
Author(s):  
Louise Watremez ◽  
Sylvie Leroy ◽  
Elia d'Acremont ◽  
Stéphane Rouzo

<p>The Gulf of Aden is a young and active oceanic basin, which separates the south-eastern margin of the Arabian Plate from the Somali Plate. The rifting leading to the formation of the north-eastern Gulf of Aden passive margin started ca. 34 Ma ago when the oceanic spreading in this area initiated at least 17.6 Ma ago. The opening direction (N26°E) is oblique to the mean orientation of the Gulf (N75°E), leading to a strong structural segmentation.</p><p>The Encens cruise (2006) allowed for the acquisition of a large seismic refraction dataset with profiles across (6 lines) and along (3 lines) the margin, between the Alula-Fartak and Socotra-Hadbeen fracture zones, which define a first order segment of the Gulf. P-wave velocity modelling already allowed us to image the crustal thinning and the structures, from continental to oceanic domains, along some of the profiles. A lower crustal intermediate body is observed in the Ashawq-Salalah segment, at the base of the transitional and oceanic crusts. The nature of this intermediate body is most probably mafic, linked to a post-rift thermal anomaly. The thin (1-2 km) sediment layer in the study area allows for a clear conversion of P-waves to S-waves at the top basement. Thus, most seismic refraction records show very clear S-wave arrivals.</p><p>In this study, we use both P-wave and S-wave arrivals to delineate the crustal structures and segmentation along and across the margin and add insight into the nature of the rocks below the acoustic basement. P-wave velocity modelling allows for the delineation of the structure variations across and along the margin. The velocity models are used as a base for the S-wave modelling, through the definition of Poisson’s ratios in the different areas of the models. Picking and modelling of S-wave arrivals allow us to identify two families of converted waves: (1) seismic waves converted at the basement interface on the way up, just before arriving to the OBS and (2) seismic waves converted at the basement on the way down, which travelled into the deep structures as S-waves. The first set of arrivals allows for the estimation the S-wave velocities (Poisson’s ratio) in the sediments, showing that the sediments in this area are unconsolidated and water saturated. The second set of arrivals gives us constraints on the S-wave velocities below the acoustic basement. This allows for an improved mapping of the transitional and oceanic domains and the confirmation of the mafic nature of the lower crustal intermediate body.</p>


1974 ◽  
Vol 64 (6) ◽  
pp. 1621-1627 ◽  
Author(s):  
J. C. Savage

abstract A comprehensive set of body-wave spectra has been calculated for the Haskell fault model generalized to a circular fault surface. These spectra are used to show that in practice the P-wave corner frequency (ƒp) may exceed the S-wave corner frequency (ƒs) when near-sonic or transonic rupture propagation obtains. The explanation appears to be that in such cases ƒs is so large that it is not identified within the recorded band, but rather a secondary corner is mistaken for ƒs. As a consequence of failing to detect the true asymptotic trend, the high-frequency falloff of the spectrum with frequency is substantially less for S waves than for P waves. This explanation appears to be consistent with the demonstration by Molnar, Tucker, and Brune (1973) that ƒp may exceed ƒs.


1995 ◽  
Vol 11 (2) ◽  
pp. 233-247 ◽  
Author(s):  
Javier F. Pacheco ◽  
Shri Krishna Singh

The Valley of Mexico is exposed to seismic risk from normal-faulting, large intermediate-depth earthquakes. We explore two approaches to estimate future ground motions from such events at CU, a hill-zone site in the valley. In the first we obtain parameters of an ω2 seismic source model and determine amplification of seismic waves due to local site effects at CU. This permits estimation of Fourier spectrum of expected ground motion at CU from postulated earthquakes. We find that the S-waves suffer an amplification of 2.5 between 0.2 to 3.0 Hz. This amplification is similar to that observed from deep teleseismic events but differs from that obtained from shallow coastal events. In the second approach the available recordings at CU are used as empirical Green's functions (EGF) to synthesize motions from future large earthquakes. This approach is very powerful if the smaller event is truly an empirical Green's function for the postulated earthquake.


2019 ◽  
Vol 109 (6) ◽  
pp. 2674-2690 ◽  
Author(s):  
Norman H. Sleep ◽  
Nori Nakata

Abstract Strong S waves produce dynamic stresses, which bring the shallow subsurface into nonlinear inelastic failure. We examine implications of nonlinear viscous flow, which may be appropriate for shallow muddy soil, and contrast them with those of Coulomb friction within a shallow reverberating uppermost layer with low‐seismic velocities. Waves refract into essentially vertical paths at the shallow layers and produce tractions on horizontal planes. The Coulomb ratio of shear traction to lithostatic stress for S waves equals the resolved horizontal acceleration normalized to the acceleration of gravity. The ratio of dynamic vertical normal traction to lithostatic stresses is the vertical normalized acceleration from P waves. The predicted viscous inelastic strain rate in muddy soil begins at low normalized accelerations and then increases mildly and nonlinearly with increasing normalized acceleration. Failure is unaffected when P waves decrease the vertical normal traction. Seismic waves recorded at KiK‐net station KMMH16 for the 2016 Kumamoto mainshock and strong foreshock show these effects. Inelastic deformation commences at a normalized horizontal acceleration of ∼0.25 and reduces S‐ and P‐wave velocities within the uppermost ∼15  m reverberating layer. Normalized horizontal accelerations and the Coulomb stress ratio reach ∼1.25. Strong S waves arrived even when strong P waves produced vertical tension on horizontal planes. In contrast, inelastic Coulomb failure commences at a normalized horizontal acceleration equal to the effective coefficient of friction; rapid inelastic strain precludes even higher accelerations. Furthermore, horizontal planes should fail from the stresses of strong S waves during the tensional cycle of strong P waves.


1982 ◽  
Vol 72 (6A) ◽  
pp. 1927-1956
Author(s):  
Ralph J. Archuleta

abstract Gross features of the rupture mechanism of the 1979 Imperial Valley earthquake (ML = 6.6) are inferred from qualitative analysis of near-source ground motion data and observed surface rupture. A lower bound on the event's seismic moment of 2.5 × 1025 dyne-cm is obtained by assuming that the average slip over the whole fault plane equals the average surface rupture, 40.5 cm. Far-field estimates of moment suggest an average slip over the fault plane of 105 cm, from which a static stress drop of 11 bars is obtained. An alternative slip model, consistent with the far-field moment, has 40.5 cm of slip in the upper 5 km of the fault and 120 cm of slip in the lower 5 km. This model suggests a static stress drop of 39 bars. From the lower estimate of 11 bars, an average strain drop of 32 µstrain is derived. This strain drop is four times greater than the strain that could have accumulated since the 1940 El Centro earthquake based on measured strain rates for the region. Hence, a major portion of the strain released in the 1979 main shock had been accumulated prior to 1940. Unusually large amplitude (500 to 600 cm/sec2) vertical accelerations were recorded at stations E05, E06, E07, E08, EDA of the EI Centro array, and the five stations of the differential array near EDA. Although the peak acceleration of 1705 cm/sec2 at E06 is probably amplified by a factor of 3 due to local site conditions, these large amplitude vertical accelerations are unusual in that they are evident on only a few stations, all of which are near the fault trace and at about the same epicentral range. Two possible explanations are considered: first, that they are due to a direct P wave generated from a region about 17 km north of the hypocenter, or second, that they are due to a PP phase that is unusually strong in the Imperial Valley due to the large P-wave velocity gradient in the upper 5 km of the Imperial Valley. Based on the distribution of both the horizontal and vertical offsets, it is likely that the rupture went beyond stations E06 and E07 during the main shock. By exploiting the antisymmetry of the parallel components of particle velocity between E06 and E07 and by examining polarization diagrams of the particle velocity at E06 and E07, an average rupture velocity in the basement of 2.5 to 2.6 km/sec between the hypocenter and station E06 is obtained. In addition, several lines of evidence suggest that the Imperial fault dips about 75° to the NE.


Geophysics ◽  
2021 ◽  
pp. 1-109
Author(s):  
Alexey Stovas ◽  
Yuriy Roganov ◽  
Vyacheslav Roganov

The parameterization of anisotropic models is very important when focusing on specific signatures of seismic waves and reducing the parameters crosstalk involved in inverting seismic data. The parameterization is strongly dependent on the problem at hand. We propose a new parameterization for an elastic orthorhombic model with on-axes P- and S-wave velocities and new symmetric anelliptic parameters. The perturbation approach is well defined for P waves in acoustic orthorhombic media. In the elastic orthorhombic media, the P-wave perturbation coefficients are very similar to their acoustic counterparts. However, the S-waves perturbation coefficients are still unknown. The perturbation coefficients can be interpreted as sensitivity coefficients, and they are important in many applications. We apply the second-order perturbation in anelliptic parameters for P, S1 and S2 wave phase velocities in elastic orthorhombic model. We show that using the conventional method some perturbation coefficients for S waves are not defined in the vicinity of the singularity point in an elliptical background model. Thus, we propose an alternative perturbation approach that overcomes this problem. We compute the first- and second-order perturbation coefficients for P and S waves. The perturbation-based approximations are very accurate for P and S waves compared with exact solutions, based on a numerical example. The reductions to transversely isotropic and acoustic orthorhombic models are also considered for analysis. We also show how perturbations in anelliptic parameters affect S-wave triplications in an elastic orthorhombic model.


2020 ◽  
Author(s):  
Mayank Dixit ◽  
Ketan Singh Roy ◽  
Arpan Shastri

Abstract The complex and covert phenomenon undergoing in the earth’s interior is revealed by the seismic waves propagating to the surface. The main objective of this study is to uphold the difference in the nature of waves transmitted due to quarry blasts and earthquakes and differentiate the tremors caused by the two. A total of ~1300 ground motions recorded at different broadband seismic stations of Saurashtra, Gujarat, observed from 2012 to 2016 of magnitude greater than or equal to 1.4 were considered for the study. These recordings have been obtained from the seismic network established and maintained by Seismic Data Analysis Center (SeiDAC), Institute of Seismological Research (ISR), Gandhinagar, Gujarat. In this investigation, ground motions of frequency greater than 1Hz were considered and statistical method (maximum of P to S (P/S) waves amplitude ratio) was applied for four mutually exclusive frequency bands such as 2 to 4, 4 to 6, 6 to 8, 8 to 10 and a common bin from 1 to 10 Hz. The outcome of this investigation suggested that ~10% of the examined ground motion records were caused due to quarry blasts and the rest as a consequence of earthquakes. Application of the coda decay rate method revealed that the coda decay rate Qc־¹ is significantly higher for quarry blasts than earthquakes of lower frequencies (1.5 and 3.0 Hz). The spectrogram analysis affirms the distinction between quarry blasts and earthquakes in terms of varying frequency content. The detailed investigation brought forward an intriguing remark about mining-induced seismicity as more seismic activity was observed during the daytime when compared with the after-dark recordings. The findings of this investigation may contribute to the existing knowledge base on earthquakes in addition to creating a distinction between the natural and manmade earthquakes.


Geophysics ◽  
1990 ◽  
Vol 55 (6) ◽  
pp. 646-659 ◽  
Author(s):  
C. Frasier ◽  
D. Winterstein

In 1980 Chevron recorded a three‐component seismic line using vertical (V) and transverse (T) motion vibrators over the Putah sink gas field near Davis, California. The purpose was to record the total vector motion of the various reflection types excited by the two sources, with emphasis on converted P‐S reflections. Analysis of the conventional reflection data agreed with results from the Conoco Shear Wave Group Shoot of 1977–1978. For example, the P‐P wave section had gas‐sand bright spots which were absent in the S‐S wave section. Shot profiles from the V vibrators showed strong P‐S converted wave events on the horizontal radial component (R) as expected. To our surprise, shot records from the T vibrators showed S‐P converted wave events on the V component, with low amplitudes but high signal‐to‐noise (S/N) ratios. These S‐P events were likely products of split S‐waves generated in anisotropic subsurface media. Components of these downgoing waves in the plane of incidence were converted to P‐waves on reflection and arrived at receivers in a low‐noise time window ahead of the S‐S waves. The two types of converted waves (P‐S and S‐P) were first stacked by common midpoint (CMP). The unexpected S‐P section was lower in true amplitude but much higher in S/N ratio than the P‐S section. The Winters gas‐sand bright spot was missing on the converted wave sections, mimicking the S‐S reflectivity as expected. CRP gathers were formed by rebinning data by a simple ray‐tracing formula based on the asymmetry of raypaths. CRP stacking improved P‐S and S‐P event resolution relative to CMP stacking and laterally aligned structural features with their counterparts on P and S sections. Thus, the unexpected S‐P data provided us with an extra check for our converted wave data processing.


Sign in / Sign up

Export Citation Format

Share Document