Controlling transport using surface porosity in colloidosomes

2021 ◽  
Author(s):  
Rachel Tessa Rosenberg
Keyword(s):  
Author(s):  
Thomas P. Turnbull ◽  
W. F. Bowers

Until recently the prime purposes of filters have been to produce clear filtrates or to collect particles from solution and then remove the filter medium and examine the particles by transmission electron microscopy. These filters have not had the best characteristics for scanning electron microscopy due to the size of the pores or the surface topography. Advances in polymer chemistry and membrane technology resulted in membranes whose characteristics make them versatile substrates for many scanning electron microscope applications. These polysulphone type membranes are anisotropic, consisting of a very thin (0.1 to 1.5 μm) dense skin of extremely fine, controlled pore texture upon a much thicker (50 to 250μm), spongy layer of the same polymer. Apparent pore diameters can be controlled in the range of 10 to 40 A. The high flow ultrafilters which we are describing have a surface porosity in the range of 15 to 25 angstrom units (0.0015-0.0025μm).


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Gui-chen Li ◽  
Chong-chong Qi ◽  
Yuan-tian Sun ◽  
Xiao-lin Tang ◽  
Bao-quan Hou

The kinetics of fluid-solid coupling during immersion is an important topic of investigation in rock engineering. Two rock types, sandstone and mudstone, are selected in this work to study the correlation between the softening characteristics of the rocks and moisture content. This is achieved through detailed studies using scanning electron microscopy, shear tests, and evaluation of rock index properties during exposure to different moisture contents. An underground roadway excavation is simulated by dynamic finite element modeling to analyze the effect of moisture content on the stability of the roadway. The results show that moisture content has a significant effect on shear properties reduction of both sandstone and mudstone, which must thus be considered in mining or excavation processes. Specifically, it is found that the number, area, and diameter of micropores, as well as surface porosity, increase with increasing moisture content. Additionally, stress concentration is negatively correlated with moisture content, while the influenced area and vertical displacement are positively correlated with moisture content. These findings may provide useful input for the design of underground roadways.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Shuqi Zhu ◽  
Hao Yu ◽  
Yanmo Chen ◽  
Meifang Zhu

Dry-jet-wet-electrospinning (DJWE) was carried out to study the formational mechanism of poly(hydroxybutyrate-co-hydroxyvalerate) electrospun fibers. Morphological comparison between normal electrospinning (NE) and DJWE was investigated. The results showed that jet could solidify quickly in DJWE to avoid bead collapse or fiber coherence. Jet structures could be maintained at very low collection distance. Beanpod-like beads, which were named as primary beads, could be seen at the boundary of stability and instability section and divided into spindle-like beads with longer collection distance. Bead-free electrospun fibers from DJWE had few bonding points among each other, and fast solidification and double-diffusion led to rough and shriveled fiber surface. DJWE mats were higher hydrophobic than that from NE due to more loose structure and higher surface porosity. Higher bead ratio on the surface and rounder bead structure resulted in higher hydrophobicity.


2016 ◽  
Vol 378 ◽  
pp. 63-72 ◽  
Author(s):  
J.K. Tripathi ◽  
T.J. Novakowski ◽  
A. Hassanein

Author(s):  
Mohammad Azadeh ◽  
Hamidreza Khakrah

This study numerically investigated the behavior of a Newtonian droplet impacting a heated porous surface. In this regard, a two-phase finite volume code was used for laminar flow. The time adaptive method was applied to enhance the accuracy of results and better convergence of the solving process. Also, the dynamic grid adaptation technique was adopted to predict the liquid-air interface precisely. The results were first validated against experimental data at different Weber numbers. Then the effect of variations in the droplet temperature was investigated on the spreading factor. The obtained results revealed that the rise in droplet temperature led to an increase in the maximum spreading diameter due to the reduction in the effects of viscosity, density, and surface tension. In the next step, the effects of droplet impact on the hydrophilic and superhydrophobic surfaces with the porosities of 20–80% were evaluated. The obtained results revealed that the increase in the surface porosity caused a decrease in the droplet diameter during the impact time. Also, at high surface porosity values, the decline in the contact angle influence on the droplet dynamic behavior was observed.


2022 ◽  
Vol 1049 ◽  
pp. 130-137
Author(s):  
Natalia Antonova

New porous films based on polyanionic cellulose with AlOOH nanoparticles have been developed. The morphology of the films has been studied by electron microscopy: the size of the formed pores is 1000-500 microns; the total surface porosity of the films is 30%. Using infrared microscopy, it was shown that during the formation of porous films, their chemical composition remains unchanged. Differential scanning calorimetry was used to determine the threshold for thermal destruction of porous films: 306 С. The possibility of using the obtained materials as antifriction coatings when filling the pores with solid lubricant MoS2 is considered. It is shown that for a steel sample protected by a porous coating with MoS2, the friction coefficient decreases by 50% compared to the friction coefficient for a steel surface under a load of up to 450 MPa.


Fibers ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Marek Gryta

Only nonwetted porous membranes can be used in membrane distillation. The possibility of application in this process the capillary polypropylene membranes manufactured by thermally-induced phase separation was studied. The performance of a few types of membranes available commercially was presented. The resistance of the membranes to wetting was tested in the continuous process of water desalination. These studies were carried out for 1000 h without module cleaning. The presence of scaling layer on the membranes surface was confirmed by Scanning Electron Microscope observations. Both the permeate flux and distillate conductivity were almost not varied after the studied period of time, what indicates that the used membranes maintained their nonwettability, and the negative influence of scaling was limited. The role of surface porosity on the pore wetting and influence of membrane wettability on the quality of the distillate obtained were discussed.


Sign in / Sign up

Export Citation Format

Share Document