scholarly journals Simultaneous Removal of Reactive Dyes and Hexavalent Chromium by a Metal Tolerant Pseudomonas sp. WS-D/183 Harboring Plant Growth Promoting Traits

2020 ◽  
Vol 23 (02) ◽  
pp. 241-252
Author(s):  
Sabir Hussain

Textile industry is a continuous source of colored wastewater. This wastewater frequently used for irrigation purpose in many underdeveloped countries including Pakistan. In this study, we isolated the bacterial strains capable of decolorizing dyes and promote the plant growth. Hence to decolorize the reactive red 120 (RR120), the strain WS-D/183 was optimized following response surface methodology (RSM) based modeling approach. Moreover, strain WS-D/183 was also assessed for plant growth promoting characteristics. Results revealed that the strain WS-D/183 showed a good potential for decolorization of structurally diverse types of azo dyes on reaction with a mixture of heavy metal ions (Cr6+, Cd2+, Zn2+, Pb2+). This strain concurrently removed reactive dyes (100 mg L-1 ) and reduced Cr(VI). Results showed that each dye was decolorized up to 90% except reactive yellow-2 which was decolorized up to 57.4%. Furthermore, the bacterium reduced Cr(VI) by 41 to 95% along with concurrent decolorization of RR120. This bacterium was also found to carry plant growth promoting traits including inorganic phosphate solubilization (497.6 ± 14.8 µg mL-1 ) and indole-3-acetic acid production (21.07 ± 0.9 µg mL-1 ). A phytotoxicity evaluation study indicated that irrigation of mung bean [Vigna radiata (L.) Wilczek] with RR120, Cr(VI) and RR120+Cr(VI) contaminated waters treated with the strain WS-D/183 enhanced germination along with plumule and radical length of seedlings. Results suggested that Pseudomonas sp. WS-D/183 is a valuable addition to the bioresources, which can be used to devise textile wastewater treatment strategies as well as for integrated bioremediation and plant growth promotion in agricultural soils contaminated with textile wastewaters. © 2020 Friends Science Publishers

2021 ◽  
Vol 22 (3) ◽  
pp. 441-449
Author(s):  
Pradeep Kumar ◽  
Sandeep Kumar ◽  
R.C. Dubey

Plant growth-promoting bacterial strains (LEP1-LEP31) were isolated from rhizosphere of Lycopersicon esculentum L. (Tomato) and screened for their plant growth promoting (PGP) activities. On the basis of morphological, physiological, biochemical, carbon source utilization and molecular characterization, these strains were identified as Pseudomonas sp., Azotobacter sp. and Bacillus sp. For antagonistic activities all the strains were subject to the chitinase activities by the development of clear halo around the inoculated bacterial spots when loaded on chitin (0.2%) supplemented mediumBased on pot and field trial results of individual strains and consortium application, it may be concluded that all the three strains i.e. Pseudomonas sp. LEP17, Azotobacter sp. strain LEP21 and Bacillus sp. strain LEP25 showed plant growth promoting effects. The growth promotion provided by these strains was apparently related to improve shoot and root development, which resulted in better nutrient uptake capability and suppression of plant pathogen. All these three strains were superior in this regard because they provided the best and most consistent effects on growth and yield of L. esculentum. All these strains Pseudomonas sp. LEP17, Azotobacter sp. strain LEP21, Bacillus sp. strain LEP25 and their consortium seems to be suitable for use as a plant growth promoting and improvement of growth and yield


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 888
Author(s):  
Giorgia Novello ◽  
Patrizia Cesaro ◽  
Elisa Bona ◽  
Nadia Massa ◽  
Fabio Gosetti ◽  
...  

The reduction of chemical inputs due to fertilizer and pesticide applications is a target shared both by farmers and consumers in order to minimize the side effects for human and environmental health. Among the possible strategies, the use of biostimulants has become increasingly important as demonstrated by the fast growth of their global market and by the increased rate of registration of new products. In this work, we assessed the effects of five bacterial strains (Pseudomonas fluorescens Pf4, P. putida S1Pf1, P. protegens Pf7, P. migulae 8R6, and Pseudomonas sp. 5Vm1K), which were chosen according to their previously reported plant growth promotion traits and their positive effects on fruit/seed nutrient contents, on a local onion cultivar and on zucchini. The possible variations induced by the inoculation with the bacterial strains on the onion nutritional components were also evaluated. Inoculation resulted in significant growth stimulation and improvement of the mineral concentration of the onion bulb, induced particularly by 5Vm1K and S1Pf1, and in different effects on the flowering of the zucchini plants according to the bacterial strain. The present study provides new information regarding the activity of the five plant growth-promoting bacteria (PGPB) strains on onion and zucchini, two plant species rarely considered by the scientific literature despite their economic relevance.


2017 ◽  
Vol 5 (5) ◽  
Author(s):  
Vanessa Nessner Kavamura ◽  
Suikinai Nobre Santos ◽  
Rodrigo Gouvêa Taketani ◽  
Rafael Leandro Figueiredo Vasconcellos ◽  
Itamar Soares Melo

ABSTRACT The strain of Bacillus sp. CMAA 1363 was isolated from the Brazilian Caatinga biome and showed plant growth-promoting traits and ability to promote maize growth under drought stress. Sequencing revealed genes involved in stress response and plant growth promotion. These genomic features might aid in the protection of plants against the negative effects imposed by drought.


2021 ◽  
Vol 8 (sp1) ◽  
pp. 17-24
Author(s):  
Tanvir Kaur ◽  
Rubee Devi ◽  
Divjot Kour ◽  
Ashok Yadav ◽  
Ajar Nath Yadav

Potassium (K) is the foremost macronutrients for growth of plant, soil health and fertility. The huge application of NPK chemical fertilizers negatively impacts the economy and is a threat to environmental sustainability. The rapid depletion of K mineral in soil is due to the application of agrochemicals agricultural fields for the production of crops in India. In present investigation, K-solubilizing microbes (KSM) were isolated and enumerated from cereal crops growing in Sirmour Himachal Pradesh. A total 125 bacteria were isolated and screened for K- solubilization on Aleksandrov agar plates and found that 31 bacterial strains exhibited K-solubilization. These 31 K-solubilizing strains of bacteria were additionally screened for other plant growth promoting (PGP) potential including solubilization of minerals, production of siderophores, ammonia, hydrogen cyanide and indole acetic acids. The performance of an efficient K-solubilizer was evaluated for plant growth promoting ability in pot assay under in vitro conditions. The strain EU-LWNA-25 positively influenced shoot length, fresh weight, carotenoids and total sugar content than the full dose, half dose and control. The strain enhancing physiological and growth parameters was identified by BLASTn analysis as Pseudomonas gessardii EU-LWNA-25. K-solubilizing plant growth promoting bacteria could be suitable bioinoculants for Rabi seasonal crops and overcomes the challenges of sustainable agriculture in K-deficient soil.


2019 ◽  
Vol 116 (31) ◽  
pp. 15735-15744 ◽  
Author(s):  
Anna Koprivova ◽  
Stefan Schuck ◽  
Richard P. Jacoby ◽  
Irene Klinkhammer ◽  
Bastian Welter ◽  
...  

Plants in their natural ecosystems interact with numerous microorganisms, but how they influence their microbiota is still elusive. We observed that sulfatase activity in soil, which can be used as a measure of rhizosphere microbial activity, is differently affected by Arabidopsis accessions. Following a genome-wide association analysis of the variation in sulfatase activity we identified a candidate gene encoding an uncharacterized cytochrome P450, CYP71A27. Loss of this gene resulted in 2 different and independent microbiota-specific phenotypes: A lower sulfatase activity in the rhizosphere and a loss of plant growth-promoting effect by Pseudomonas sp. CH267. On the other hand, tolerance to leaf pathogens was not affected, which agreed with prevalent expression of CYP71A27 in the root vasculature. The phenotypes of cyp71A27 mutant were similar to those of cyp71A12 and cyp71A13, known mutants in synthesis of camalexin, a sulfur-containing indolic defense compound. Indeed, the cyp71A27 mutant accumulated less camalexin in the roots upon elicitation with silver nitrate or flagellin. Importantly, addition of camalexin complemented both the sulfatase activity and the loss of plant growth promotion by Pseudomonas sp. CH267. Two alleles of CYP71A27 were identified among Arabidopsis accessions, differing by a substitution of Glu373 by Gln, which correlated with the ability to induce camalexin synthesis and to gain fresh weight in response to Pseudomonas sp. CH267. Thus, CYP71A27 is an additional component in the camalexin synthesis pathway, contributing specifically to the control of plant microbe interactions in the root.


2017 ◽  
Vol 5 (15) ◽  
Author(s):  
Aurelie Laugraud ◽  
Sandra Young ◽  
Emily Gerard ◽  
Maureen O’Callaghan ◽  
Steven Wakelin

ABSTRACT Pseudomonas sp. strain C9 is a plant growth–promoting bacterium isolated from the root tissue of Brassica oleracea L. grown in soil from Marlborough, New Zealand. Its draft genome of 6,350,161 bp contains genes associated with plant growth promotion and biological control.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Bushra Uzair ◽  
Rehana Kausar ◽  
Syeda Asma Bano ◽  
Sammer Fatima ◽  
Malik Badshah ◽  
...  

The use of microbial technologies in agriculture is currently expanding quite rapidly with the identification of new bacterial strains, which are more effective in promoting plant growth. In the present study 18 strains of Pseudomonas were isolated from soil sample of Balochistan coastline. Among isolated Pseudomonas strains four designated as SP19, SP22, PS24, and SP25 exhibited biocontrol activities against phytopathogenic fungi, that is, Rhizopus microsporus, Fusarium oxysporum, Aspergillus niger, Alternaria alternata, and Penicillium digitatum; PS24 identified as Pseudomonas aeruginosa by 16srRNA gene bank accession number EU081518 was selected on the basis of its antifungal activity to explore its potential as plant growth promotion. PS24 showed multiple plant growth promoting attributes such as phosphate solubilization activity, indole acetic acid (IAA), siderophore, and HCN production. In order to determine the basis for antifungal properties, antibiotics were extracted from King B broth of PS24 and analyzed by TLC. Pyrrolnitrin antibiotic was detected in the culture of strain PS24. PS24 exhibited antifungal activities found to be positive for hydrogen cyanide synthase Hcn BC gene. Sequencing of gene of Hcn BC gene of strain PS24 revealed 99% homology with the Pseudomonas aeruginosa strain PA01. The sequence of PS24 had been submitted in gene bank accession number KR605499. Ps. aeruginosa PS24 with its multifunctional biocontrol possessions can be used to bioprotect the crop plants from phytopathogens.


1998 ◽  
Vol 44 (6) ◽  
pp. 528-536 ◽  
Author(s):  
V K Sharma ◽  
J Nowak

The potential utilization of a plant growth promoting rhizobacterium, Pseudomonas sp. strain PsJN, to enhance the resistance of tomato transplants to verticillium wilt was investigated. Plant growth and disease development were tested on the disease-susceptible cultivar Bonny Best after Verticillium dahliae infection of tissue culture plantlets bacterized in vitro (by co-culturing with the bacterium) and seedlings bacterized in vivo (after 3 weeks growth in the greenhouse). Significant differences in both disease suppression and plant growth were obtained between in vitro bacterized and nonbacterized (control) plants. The degree of protection afforded by in vitro bacterization depended on the inoculum density of V. dahliae; the best and worst protection occurred at the lowest (103 conidia ·mL-1) and highest (106 conidia ·mL-1) levels, respectively. In contrast, the in vivo bacterized tomatoes did not show plant growth promotion when compared to the nonbacterized control plants. When challenged with Verticillium, significant growth differences between in vivo bacterized plants (26.8% for shoot height) and nonbacterized controls were only seen at the 3rd week after inoculation. Compared with the in vitro inoculation, there was no delay in the verticillium wilt symptom expression, even at the lowest concentration of V. dahliae, by in vivo PsJN inoculation. These results suggest that endophytic colonization of tomato tissues is required for the Verticillium-resistance responses. Plant growth promotion preceeds the disease-resistance responses and may depend on the colonization thresholds and subsequent sensitization of hosts.Key words: Pseudomonas sp., plant growth promoting rhizobacterium, Verticillium dahliae, tomato, colonization, plant growth promotion, disease suppression.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1776 ◽  
Author(s):  
Bartholomew Adeleke ◽  
Ayansina Ayangbenro ◽  
Olubukola Babalola

Insights into plant endophytic microbes and their exploration in agriculture have provided opportunities for sustainable plant health and food safety. Notable endophytic Bacillus species with plant growth-promoting traits have been documented; nevertheless, information on genome analysis of B. cereus associated with the sunflower in South Africa has not been studied. Therefore, we present whole-genome sequence of agriculturally important B. cereus strain T4S isolated from sunflower plants. The NextSeq Illumina sequencing yielded 7,255,762 bp sequence reads, 151 bp average read length, 5,945,881 bp genome size, 56 tRNA, 63 rRNA, and G + C content of 34.8%. The phylogeny analysis of strain T4S was similar to B. cereus NJ-W. Secondary metabolites, such as petrobactin, bacillibactin, bacitracin, molybdenum factor, zwittermicin, and fengycin underlining bacterial biocontrol efficacy against phytopathogens were found in the T4S genome. The predicted novel genes in the bacterial genome mediating the complex metabolic pathways can provide a genetic basis in understanding endosphere biology and their multiple functions thereof in crop improvement. Interestingly, seed and root inoculation with strain T4S contributed to sunflower yield under greenhouse experiments. Hence, the detection of notable genes specific for plant growth promotion as validated under in vitro screening, promisingly, suggests the relevance of strain T4S in agricultural biotechnology.


Sign in / Sign up

Export Citation Format

Share Document