scholarly journals Efisiensi Keseragaman Distribusi Air Dari Variasi Ketinggian Pipa Pada Sistem Irigasi Curah

2017 ◽  
Vol 2 (2) ◽  
pp. 430-438
Author(s):  
Ariswandi Putra ◽  
Ichwana Ichwana ◽  
Susi Chairani

Abstrak. Sistem irigasi curah pada penerapannya dapat menghemat air serta waktu yang dibutuhkan untuk menyiram tanaman. Sistem irigasi curah mendistribusikan air dari pompa air sebagai sumber tekanan melalui sistem perpipaan hidrolika dalam bentuk curahan air yang disemprotkan ke udara, kemudian curahan air tersebut jatuh ke tanah maupun akar-akar  tanaman. Ketinggian pipa merupakan salah satu faktor penting yang dapat menentukan kinerja sistem irigasi curah terhadap keseragaman distribusi atau penyebaran curahan air ke tanaman. Hasil penelitian ini menjelaskan bahwa ketinggian pipa memberi pengaruh terhadap semua parameter yang diamati, yakni koefisien keseragaman distribusi air (CU), laju penyiraman air dan jarak lempar air. Nilai rata-rata debit nozzle yang diperoleh adalah 3,4007 liter/menit dan nilai rata-rata laju penyiraman air 4897,032 mm/hari. Nilai koefisien keseragaman distribusi air adalah sebesar 99,017 % pada riser 15 cm, 99,015 % pada riser 20 cm dan 99,016 % pada riser 25 cm. Kemudian nilai rata-rata jarak lempar air 127,33 cm. Adapun untuk mengetahui pengaruh ketinggian pipa pada sistem irigasi curah adalah dengan menggunakan persamaan regresi linear. Maka nilai regresi linear yang dihasilkan adalah sebesar 75,4 % dari seluruh parameter yang diamati, yakni koefisien keseragaman distribusi air (CU), laju penyiraman air dan jarak lempar air. Kata kunci : Sistem irigasi curah, ketinggian pipa. Abstract. The sprinkler irrigation system in the application of bulk can save water as well as the time needed for watering plants. The sprinkler irrigation system to distribute the water from the water pump as the source pressure through the piping system hydraulics in the form of a drink of water that is sprayed into the air, then the water flow fell to the ground and the roots of plants. The riser is one of the important factors that can determine the performance of irrigation systems bulk of the uniform distribution or dissemination of water flow into the plant. The results of this study explains that the height of the pipe to give effect to all parameters were observed, namely water distribution coefficient of uniformity (CU), the rate of watering and water throwing distance. The average value obtained discharge nozzle is 3.4007 liters / min and the average value of the rate of watering 4897.032 mm / day. The coefficient of uniformity of water distribution is equal to 99.017% at 15 cm riser, the riser 99.015% 99.016% 20 cm and 25 cm on the riser. Then the average value of 127.33 cm water throwing distance. As for the height of the pipe to determine the effect on the bulk of irrigation systems is to use linear regression equation. Then the resulting linear regression value is equal to 75,4 % of all observed parameters, ie water distribution coefficient of uniformity (CU), the rate of watering and water throwing distance. Keywords : The sprinkler irrigation system, the riser.

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1583 ◽  
Author(s):  
Kai Zhang ◽  
Bo Song ◽  
Delan Zhu

Sinusoidal oscillating water flow at low pressure can improve the anti-clogging ability of an emitter in drip irrigation or the water distribution of a nozzle in sprinkler irrigation and reduce the cost and energy consumption of the irrigation system. In this study, the characteristics of instantaneous pressure head attenuation of oscillating water flow along a pipeline have been investigated. By using a complex function to solve the continuity equation and the momentum equation of a pipeline with water hammer motion and using the Darcy–Weisbach formula to estimate the head loss, a calculation model for the instantaneous pressure head of oscillating water flow along a pipeline was developed. The measured value of the amplitude of the pressure head and the average instantaneous pressure head in the experiments have been used to verify the corresponding pressure head calculated by the model. The results show that the amplitude of the pressure head and the average instantaneous pressure head decrease linearly along the pipeline. The calculated value of the amplitude of the pressure head and the average instantaneous pressure head are basically close to the corresponding measured pressure head. From the results of all the tests, the maximum relative error of the calculated and measured value of the amplitude of the pressure head along the pipeline was 9.44%. The maximum relative error of the calculated and measured value of the average instantaneous pressure head along the pipeline was 8.37%. Hence, the model can accurately predict the instantaneous pressure head of oscillating water flow along a pipe and provide a theoretical basis for the application of oscillating water flow in irrigation systems and the design of irrigation pipe networks.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1325 ◽  
Author(s):  
Kai Zhang ◽  
Bo Song ◽  
Delan Zhu

Laterally-moving sprinkler irrigation systems under low pressure experience problems including small spraying range, low uniformity, surface runoff, and low water utilization rate. To solve these problems, experiments were carried out on a laterally-moving sprinkler irrigation system using a Nelson D3000 sprinkler (Nelson Irrigation Co., Walla Walla, WA, USA) under low pressure, sinusoidal oscillating water flow. The sprinkler intensity and impact kinetic energy intensity distribution were investigated for sprinklers both static and in motion. The test data were used to calculate combined sprinkler intensity and impact kinetic energy intensity uniformity for different nozzle spacings, and were compared with constant water pressure test results. It was found that sinusoidal oscillating water flow can effectively increase spraying range, as well as reducing the peak value of the sprinkler intensity and impact kinetic energy intensity. Within an optimal range of amplitude and nozzle spacing, sinusoidal oscillating water flow significantly improves the combined sprinkler intensity, impact kinetic energy intensity uniformity, and the spraying quality of laterally-moving sprinkler irrigation systems under low pressure conditions. When the average water pressure is 100 kPa, the optimal range of amplitude of sinusoidal oscillating flow applied to the laterally-moving sprinkler irrigation system is 50–60 kPa. When the amplitude is 50 kPa, the optimal nozzle spacing is 3.5–4 m; when the amplitude is 60 kPa, the optimal nozzle spacing is 3.5–4.5 m. The related parameters can provide a reference for the application of sinusoidal oscillating water flow in laterally-moving sprinkler irrigation systems.


2018 ◽  
Vol 31 (2) ◽  
pp. 370-378
Author(s):  
JÚLIO JUSTINO DE ARAÚJO ◽  
VANDER MENDONÇA ◽  
MARIA FRANCISCA SOARES PEREIRA ◽  
MATHEUS DE FREITAS SOUZA

ABSTRACT The banana tree is grown in an extensive tropical region throughout the world, usually by small producers. The present work had the objective of evaluating irrigation systems in banana production in the Açu-RN Valley, aiming at alternatives so that they can be recommended to farmers in the Açu Valley region. The experiment was carried out in the area of the School Farm of the IFRN Campus Ipanguaçu, located in the municipality of Ipanguaçu-RN. The experiment was carried out in a randomized complete block design with subdivided plots and eight replications. The irrigation systems were: irrigation, drip irrigation, micro sprinkler and alternative irrigation. The plots were composed of eight useful plants with spacing in double rows 4 x 2 x 2 m. Eight characteristics related to production were evaluated: bunch mass (MC); number of leaves (NP); number of fruits per cluster (NFC); mean mass of the leaves (MMP); diameter of the fruit of the second seed (DF2P); length of the fruit of the second seed (CF2P); mean fruit mass (MMF); productivity (Prod). The data were submitted to analysis of variance and the means were compared by the Tukey test at 5% of probability. In the first cycle of production the sprinkler irrigation system was the one that presented better results the productivity of the Pacovan banana tree; in the 3rd cycle the alternative irrigation system was the one that showed better results the productivity of the banana tree; where the electrical conductivity correlated with the sodium adsorption ratio in the irrigation water, contributed to a moderate limitation of use.


2014 ◽  
Vol 695 ◽  
pp. 380-383 ◽  
Author(s):  
Manal Osman ◽  
Suhaimi B. Hassan ◽  
Khamaruzaman B. Wan Yusof

The irrigation uniformity of sprinkler irrigation system depends on many design factors such as nozzle type, nozzle diameter, operating pressure and riser height. An experimental study was performed to investigate the effect of combination factors of operating pressure, nozzle diameter and riser height on sprinkler irrigation uniformity. Different operating pressures, nozzle diameters and riser heights have been used. The irrigation uniformity coefficients such as coefficient of uniformity (CU) and distribution uniformity of low quarter (DUlq) have been studied. This study concluded that, the irrigation uniformity of sprinkler irrigation system was more affected by the combination of operating pressure, nozzle diameter and riser height.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2296 ◽  
Author(s):  
Yisheng Zhang ◽  
Jinjun Guo ◽  
Bin Sun ◽  
Hongyuan Fang ◽  
Delan Zhu ◽  
...  

Uniformity of water distribution plays an important role in evaluating irrigation quality. As necessities in calculating irrigation uniformity during designing a lateral-move sprinkler irrigation system (LMSIS), the water distribution patterns of individual sprinkler in motion are crucial. Considering the limitation of the experiment platform, dynamic water distribution of an isolated sprinkler is difficult to measure, especially for a fixed spray plate sprinkler (FSPS) which LMSIS has been widely equipped with in China, therefore developing a model to simulate dynamic water distribution of a moving sprinkler is necessary. The objective of this study was to develop and validate the theoretical basis for calculating water distribution characteristics of a single FSPS in translational motion applying a superposition method, and provide an optimized operation management of LMSIS. The theoretical model’s validity was verified in an indoor experiment using a Nelson D3000 FSPS in motion with 36 grooves and blue-plate spray heads. The software was programmed using the Eclipse Platform and the software was capable of simulating water distribution pattern and Christiansen uniformity coefficient (Cu). The results indicated that the water distribution simulated by the software presents three peaks of maximum application under varying conditions, and the value of water application peaks decreased as working pressure and/or mounting height increased. Conversely, the wetted diameter increased as working pressure and/or mounting height increased. Working pressure, mounting height, and sprinkler spacing each had a significant effect on the Cu. The Cu increased as working pressure and/or mounting height increased but decreased as sprinkler spacing increased. As a consequence, the model can be used to predict the relative water distribution pattern; and the Cu can be calculated with the simulated data, thus providing a tool for designing a new LMSIS.


Author(s):  
K.V. Ramana Rao ◽  
Suchi Gangwar ◽  
Arpna Bajpai ◽  
Ravish Keshri ◽  
Lavesh Chourasia ◽  
...  

The field experiment was conducted at Precision Farming Development Centre, Central Institute of Agricultural Engineering, Bhopal on influence of different irrigation methods in three continuous years (2010-2013) on the performance pea crop. Conventional flood irrigation, micro sprinkler and drip irrigation systems were adopted as three treatments and with seven replications in each treatment in the study. Pea (Arkel variety) crop was sown at a spacing of 45 X 10 cm. During the period of experiment flood irrigation were applied on weekly basis and micro irrigation and drip irrigation systems were operated every third day to meet the crop water requirement. The total quantity of water applied in flood, drip irrigation and micro sprinkler systems were 387.5, 244.7 and 273.5 mm respectively. Maximum crop yield was observed under micro sprinkler system (98.60 q/ha) followed by drip and conventional irrigation system. Saving of water was found better under drip irrigation over micro sprinkler irrigation system.


2021 ◽  
Vol 922 (1) ◽  
pp. 012046
Author(s):  
P Satriyo ◽  
I S Nasution ◽  
D V Della

Abstract In recent decades, precision agriculture and smart farming have become promising issues particularly in the industrial revolution era 4.0. The main objective of this presented paper is to apply the optimized controlling system developed by means of Internet of things for controlling sprinkler irrigation systems used for agricultural product cultivation where in this study, we used shallot plants. The controlling systems were established by designing hardware and software used to monitor water distribution in sprinkler irrigation for onion plants during five initial days of cultivation. The result showed that controlled irrigation can optimize and monitor all plant growth indicators namely soil moisture, temperature, air humidity and water discharge and be able to carry out watering according to the desired level of soil moisture. It may conclude that a controlled sprinkler irrigation system can be applied as a part of precision agriculture practice in order to enhance production and sustainable agriculture.


Irriga ◽  
2008 ◽  
Vol 13 (1) ◽  
pp. 47-62 ◽  
Author(s):  
Eguimar Amorim Maciel de Souza ◽  
Paula Cristina de Souza ◽  
Márcio Antônio Vilas Boas

AVALIAÇÃO DO DESEMPENHO DE SISTEMAS DE IRRIGAÇÃO POR ASPERSÃO CONVENCIONAL FIXO E GOTEJAMENTO EM VILA RURAL  Eguimar Amorim Maciel de Souza; Paula Cristina de Souza; Márcio Antônio Vilas BoasCentro de Ciências Exatas e Tecnológicas, Universidade do Oeste do Paraná,  Cascavel , Pr, [email protected]  1 RESUMO           O manejo racional da irrigação consiste na aplicação da quantidade necessária de água às plantas no momento correto. É recomendável após a instalação de um sistema de irrigação, proceder-se a testes de campo, com o objetivo de se verificar a adequação da irrigação recomendando, quando necessário, ajustes na operação e, principalmente, no manejo. O propósito deste trabalho foi avaliar dois sistemas de irrigação, sendo um por aspersão convencional fixo e outro por gotejamento,  implantados na Vila Rural Flor do Campo, localizada na região Noroeste do Estado do Paraná, através da determinação dos parâmetros de uniformidade e eficiência de distribuição de água.  Foram utilizadas as metodologias propostas na norma ABNT NBR ISO 7749-2, Asae (1995) e por Keller & Karmeli (1975).   Foram realizados trinta ensaios em cada sistema de irrigação. Para o sistema de irrigação por aspersão foi obtido  CUC  de 77,9%, considerado abaixo do valor mínimo aceitável de 80%, sendo que  a velocidade do vento variou de 0 a 2,4 m s-1. As eficiências de aplicação (Ea) e armazenagem (Es) obtidas neste sistema foram, respectivamente, de 77,0% e 48,8%. No sistema de irrigação por gotejamento foi obtido CUC de 93,7% considerado valor excelente. A Uniformidade de Emissão (UE) encontrada foi de 89,3% sendo considerada boa. As eficiências de aplicação (Ea) e armazenagem (Es) obtidas neste sistema foram, respectivamente, de 100% e 65,0 %. UNITERMOS: Irrigação, aspersão convencional, gotejamento,       uniformidade, eficiência,  avaliação.  SOUZA, E. A. M.; SOUZA, P.C.; VILAS BOAS, M. A. PERFORMANCE EVALUATION OF FIXED CONVENTIONAL ASPERSION AND DRIPPING IRRIGATION SYSTEMS IN  A RURAL VILLAGE  2 ABSTRACT The rational handling of the irrigation consists of the application of the necessary amount of water to the plants at the correct moment. After the installation of an irrigation system, it is recommended the field tests be carried out in order to  verify the adequacy of the recommended irrigation and , when necessary, to adjust the operation and, mainly, the handling. The aim of this work was to evaluate two irrigation  systems,  a fixed conventional aspersion system and a dripping one, installed in the l Flor do Campo, a rural village located in the Northwest of Paraná state, through the determination of the parameters of water distribution uniformity and efficiency. The methodologies used were according to the  ABNT NBR ISO 7749-2 norm, Asae (1995) and for Keller & Karmeli (1975). Thirty assays in each irrigation system were tested. In the irrigation system with  aspersion CUC of 77.9%, which is considered below the minimum acceptable value of 80%, was found  considering that the wind speed varied from   0 to  2.4 ms-1. The efficiencies of application (Ea) and storage (Es) obtained in this system were 77.0% and 48.8 %, respectively. In the dripping  irrigation system, a CUC of 93.7%, considered an excellent value,  was found. The EU was 89.3% and considered good. The efficiencies of application (Ea) and storage (Es) gotten in this system were  100% and 65. 0 %, respectively. KEY WORDS: Irrigation, conventional aspersion, dripping, uniformity, efficiency, evaluation.


2018 ◽  
Vol 36 ◽  
Author(s):  
D.B. HELGUEIRA ◽  
T. D’AVILA ROSA ◽  
L. GALON ◽  
D.S. MOURA ◽  
A.T. MARTINI ◽  
...  

ABSTRACT: This study aimed to assess the efficiency and selectivity of herbicides in rice submitted to sprinkler and flood irrigation systems. The experimental design was a randomized block design arranged in a 2 × 9 factorial scheme. Factor A consisted of irrigation systems (sprinkler and flood) and Factor B consisted of herbicide treatments (T1 - control; T2 - imazethapyr + imazapic, 75 + 25 g a.i. ha-1; T3 - imazethapyr + imazapic, 150 + 50 g a.i. ha-1; T4 - imazapic + imazapyr, 73.5 + 24.5 g a.i. ha-1; T5 - imazapic + imazapyr, 147 + 49 g a.i. ha-1; T6 - imazethapyr, 106 g a.i. ha-1; T7 - imazethapyr, 212 g a.i. ha-1; T8 - sequential application of imazethapyr + imazapic, 75 + 25 g a.i. ha-1; and T9 - sequential application of imazapic + imazapyr, 73.5 + 24.5 g a.i. ha-1). The application of imazethapyr and formulated mixtures of imazethapyr + imazapic and imazapyr + imazapic provided a control higher than 97% in flood and sprinkler irrigation systems. Herbicide selectivity is not altered in the sprinkler irrigation system when compared to the flood irrigation system.


Sign in / Sign up

Export Citation Format

Share Document