Effect of Combination Factors of Operating Pressure, Nozzle Diameter and Riser Height on Sprinkler Irrigation Uniformity

2014 ◽  
Vol 695 ◽  
pp. 380-383 ◽  
Author(s):  
Manal Osman ◽  
Suhaimi B. Hassan ◽  
Khamaruzaman B. Wan Yusof

The irrigation uniformity of sprinkler irrigation system depends on many design factors such as nozzle type, nozzle diameter, operating pressure and riser height. An experimental study was performed to investigate the effect of combination factors of operating pressure, nozzle diameter and riser height on sprinkler irrigation uniformity. Different operating pressures, nozzle diameters and riser heights have been used. The irrigation uniformity coefficients such as coefficient of uniformity (CU) and distribution uniformity of low quarter (DUlq) have been studied. This study concluded that, the irrigation uniformity of sprinkler irrigation system was more affected by the combination of operating pressure, nozzle diameter and riser height.

2014 ◽  
Vol 567 ◽  
pp. 26-31
Author(s):  
Manal Osman ◽  
Suhaimi B. Hassan ◽  
Khamaruzaman Wan Yusof

The irrigation requires an efficient and effective method of water application to realize maximum return and conserve water resources. The low pressure sprinkler irrigation system is the most commonly used due to: its low energy cost, but the irrigation uniformity of this system is not constantly good because it is affecting by the design factors such as: nozzle type, nozzle diameter, operating pressure and spacing layout. But the most important factors are the operating pressure and nozzle diameter. In this study the effect of low pressure on the irrigation uniformity of the solid set sprinkler irrigation system was studied. Different low operating pressures (62, 82, 102 and122 kPa) were selected and different nozzle diameters (4, 5 and 7 mm) were used. The solid set layout was square (12 m between the sprinklers along the line and 12 m among the line). The catch-cans test was used to determine the uniformity coefficients such as: Christiansen’s coefficient of uniformity (CU), coefficient of variation (CV), distribution uniformity of low quarter (DUlq) and distribution uniformity of low half (DUlh). The distribution characteristics such as: throw radius and rotation speed were monitored. A comparison was made between the results obtained from different combination of operating pressures and nozzle diameters. The results of this study showed that, CU, DUlqand DUlhwere increased when the pressure increased for all the nozzles. The greater values of CU, DUlqand DUlhwere found with the combination of 7 mm nozzle diameter and 122 kPa. The coefficient of variation was increased when the pressure decreased for all the nozzles. The throw radius and rotation speed were increased gradually when the pressure increased. The throw radius was not significantly affected by the nozzle diameter while the rotation speed was more affected by the nozzle diameter.


Water SA ◽  
2018 ◽  
Vol 44 (3 July) ◽  
Author(s):  
Samy A Marey ◽  
Mohamed SA El Marazky ◽  
Abdulwahed M Aboukarima

Principal component analysis was merged with the artificial neural network (ANN) technique to predict wind drift and evaporation losses (WDEL) from a sprinkler irrigation system. For this purpose, field experiments were conducted to determine WDEL under different conditions. Data from field experiments and previous studies were used as sample data to train the ANN model. Three models were developed to predict WDEL. In the first model (ANN1), 9 neurons (riser height, main nozzle diameter, auxiliary nozzle diameter, discharge rate of the main nozzle, discharge rate of the auxiliary nozzle, operating pressure, wind speed, air temperature and relative humidity) were used as the input layer. In the second model (ANN2), 7 neurons (riser height, operating pressure, wind speed, air temperature and relative humidity, diameter ratio and discharge ratio) were used as the input layer. The third model (ANN3) used a multivariate technique (PC1, PC2, and PC3). Results revealed that the ANN3 model had the highest coefficient of determination (R2 = 0.8349). The R2 values for the ANN1 and ANN2 models were 0.7792 and 0.4807, respectively. It can be concluded that the ANN3 model has the highest predictive capacity.


2016 ◽  
Vol 3 (1) ◽  
pp. 41-48
Author(s):  
Dereje Bishaw ◽  
Megersa Olumana

Efficient and effective use of water resource is crucial to increase crop production. This can be achieved through uniform application of water and by reducing application losses. A field experiment was conducted at Wonji/Shoa Sugarcane Plantation (Ethiopia) to study the effect of sprinkler operating pressure and riser height on water distribution uniformity under different wind conditions. Three levels of operating pressure and two levels of sprinkler riser height, under three different wind conditions, were examined during the experiment. From the research evaporation and drift losses ranging from 11.2% to 16.4% were determined. Potential application efficiency (PAE) of 47.7% to 91.3% and actual application efficiency of low-quarter (AELQ) of 32.9% to 38.6% were achieved under various test combinations. Christiansen’s coefficient of uniformity (CU) of 71.7% to 81.7% and distribution uniformity (DU) of 56% to 75.7% were obtained under different test combinations. The results indicated that increase riser height leads to increase in sprinkler water uniformity. Higher sprinkler water uniformity and low application water loss have been encountered during low wind speed condition.


Author(s):  
S.M. Thomas ◽  
D. Bloomer ◽  
R.J. Martin ◽  
A. Horrocks

Applying water efficiently is increasingly important for dairy farmers and other users of surface and groundwater resources to maintain sustainable production. However, irrigation is rarely monitored. We used a questionnaire survey and measurements of five spray irrigation systems working in normal farm conditions to make observations on how efficiently irrigation is being managed. Survey results from 93 dairy farmers showed that, although the farmers believe they know how much water is being applied during irrigation, only 60% make measurements, and about 18% measure irrigation uniformity. Catch-can measurement of irrigation application depth for the different spray systems indicated large variability in application depths during irrigation, and field distribution uniformity ranged greatly between the different systems, decreasing in the order of centre pivots >travelling irrigators> K-line. Changes in irrigation system settings were sometimes made without considering application depths or uniformity. If our five case studies are typical, they may explain the large range of seasonal irrigation amounts recorded in the survey. We recommend that farmers monitor irrigation application depths and uniformity to help manage irrigation water efficiently and to help them estimate the value of irrigation to their enterprise. Keywords: distribution uniformity, water use efficiency, catch cans


Irriga ◽  
2017 ◽  
Vol 22 (4) ◽  
pp. 690-700
Author(s):  
Karoline Maso dos Reis ◽  
Antônio Carlos Barreto ◽  
José Renato Zanini

VAZÃO E UNIFORMIDADE DE DISTRIBUIÇÃO DE TUBO GOTEJADOR EM SUPERFÍCIE E SUBSUPERFÍCIE*     KAROLINE MASO DOS REIS1; ANTÔNIO CARLOS BARRETO1 E JOSÉ RENATO ZANINI2   *Artigo extraído da dissertação da primeira autora 1Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro, Rua João Batista Ribeiro, 4000 Distrito Industrial II 38064-790, Uberaba, Minas Gerais, Brasil. E-mails: [email protected]; [email protected]. 2Departamento de Engenharia Rural, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), 14884-900, Jaboticabal, SP, Brasil. E-mail: [email protected].     1 RESUMO   A avaliação do sistema de irrigação em subsuperfície permite conhecer as condições de seu desempenho a fim de evitar impactos ambientais e, também, perdas econômicas na irrigação localizada. O objetivo constituiu em avaliar a uniformidade de distribuição e vazão do tubo gotejador em condição de irrigação superficial e subsuperficial. Utilizou-se delineamento experimental em parcelas subdivididas no esquema fatorial 5 x 5, e quatro repetições. Os tratamentos constituíram de 5 profundidades de submersão do tubo gotejador (0; 0,1; 0,2; 0,3 e 0,4 m) combinadas com 5 pressões de entrada da água no tubo gotejador (49, 98, 147, 196 e 245 kPa). O menor coeficiente de uniformidade de distribuição obtido foi de 95,55%, e o menor coeficiente de uniformidade de Christiansen, 96,37%, classificados, respectivamente, de acordo com Merriam e Keller (1978) e Mantovani (2002), como excelentes. O coeficiente de variação de fabricação ficou dentro da regulamentação: ABNT NBR ISO 9261, sendo menor que 7%. As equações características desenvolvidas neste trabalho apresentaram coeficiente de determinação de 0,99 e podem, portanto, ser utilizadas para calcular a vazão real.   Palavras-chave: irrigação localizada, contrapressão, manejo de irrigação     REIS, K. M.;BARRETO, A. C.; ZANINI, J. R. FLOW AND DISTRIBUTION UNIFORMITY OF A DRIPLINE USED IN SURFACE AND SUBSURFACE IRRIGATION     2 ABSTRACT   The evaluation of irrigation system in subsurface allows to know the conditions of its performance in order to avoid environmental impacts and, also, economic losses in the localized irrigation. The objective was to evaluate the uniformity of distribution and flow rate of the dripping tube under surface and subsurface irrigation conditions. An experimental design was used in subdivided plots in the 5 x 5 factorial scheme, and four replications. The treatments consisted of 5 submersion depths of the dripper tube (0, 0.1, 0.2, 0.3 and 0.4 m) combined with 5 water inlet pressures in the dripper tube (49, 98, 147, 196 and 245 kPa). According to Merriam and Keller (1978) and Mantovani (2002), the lowest coefficient of uniformity of distribution was 95.55%, and the lowest coefficient of uniformity of Christiansen, 96.37%. The coefficient of variation of manufacturing was compliant with regulation ABNT NBR ISO 9261, being less than 7%. The characteristic equations developed in this work presented coefficient of determination of 0.99 and can therefore be used to calculate the actual flow.   Keywords: localized irrigation, backpressure, irrigation management


Author(s):  
Juan Tandazo Garcés ◽  
Oscar Caicedo Camposano ◽  
Carlos Salas Macías ◽  
Viviana Sánchez Vásquez

Quality of subfoliar sprinkler irrigation in Theobroma Cacao L. in San Vicente farm, Los Ríos, Ecuador Resumen Se realizó la evaluación del manejo de un sistema de riego por aspersión subfoliar en el cultivo de cacao, en donde el objetivo fue valorar su comportamiento hidráulico. Se estudiaron tres presiones de trabajo de los aspersores en cinco módulos del sistema. Los parámetros evaluados fueron: presiones al inicio y final de los laterales de riego, caudales en esos mismos sitios, coeficiente de uniformidad de Christiansen, uniformidad de distribución y área regada adecuadamente. Los resultados indican que existe una variación de presión y caudal por encima de lo teórico (20% y 10%). Se evidenció que altos coeficientes de uniformidad no representan la mayor área regada adecuadamente. Las presiones de trabajo estudiadas en los aspersores aseguran altos coeficientes de uniformidad del riego, no obstante, si lo que se desea es alcanzar la mayor área adecuadamente regada se debe operar a 275,79 kPa. Palabras claves: caudal; uniformidad; presión de trabajo. Abstract The evaluation of the management of a subfoliar sprinkler irrigation system in the cocoa crop was carried out, where the objective was to evaluate its hydraulic behavior. Three working pressures of the sprinklers were studied in five modules of the system. The parameters evaluated were: pressures at the beginning and end of the irrigation sides flow at those same sites, Christiansen Uniformity Coefficient, Distribution Uniformity and Adequately Irrigated Area. The results indicate that there is a variation of pressure and flow above the theoretical, that is, of 20% and 10%. It was evidenced that high uniformity coefficients do not represent the largest area irrigated adequately. The work pressures studied in the sprinklers ensure high coefficients of uniformity of irrigation, however, if what is desired is to reach the largest area adequately irrigated, it should be operated at 275.79 kPa. Keywords: flow; uniformity; pressure head.


2021 ◽  
Vol 904 (1) ◽  
pp. 012013
Author(s):  
B A AL-Dulaimi ◽  
Sh M AL-Mehmdy

Abstract A field experiment was conducted in Jazeerah Al-Ramadi/Al-Hamidiyah research station (latitude33^o 27^’ 〖 11.9 〗 ^(՚՚)N, longitude 43^o 23^’ ^(՚՚) E (duration 2020. This study was conducted to investigate the effect of pipe types and emitters discharge on performance criteria of surface drip irrigation system. Therefore, a two factorial experiment was set as randomized complete block design with three replications. The first factor included the type of pipes and emitters, namely Turbo, GR and T-Tape. While the second factor involved the emitters discharge which consist of two levels i.e., 4 (D4) and 8 (D8) L.h-1. The irrigation system was initially evaluated in the field before planting by testing three operating pressures (50, 100 and 150 Kpa) to determine the actual discharge of the emitters closed to their design discharge (4 and 8 L.h-1) for each emitter to calculate the manufacturing coefficient of variation (CV), distribution uniformity and the discharge variation ratio at each operating pressure. Results showed that the best discharge (Closed to design discharge of 4 L.h-1) was obtained at the 50 Kpa operating pressure which gave 3.99,3.90 and 3.81 L.h-1 when using the T-Tape pipe and GR and Turbo emitter compare when the discharge of 8L.h-1 has been used which gave 7.96, 7.84 and 7.59 L.h-1 when the former pipe and emitters were used. The best coefficient of variation was observed when the T-Tape pipe and GR and Turbo emitter were used with discharge of 4 L.h-1 up to 0.1300, 0.2200 and 0.2600 compare to 0.1300, 0.2700 and 0.3500 when the same former pipe and emitters were used with discharge of 8L. h-1. Similarly, the best distribution uniformity was obtained when the T-Tape pipe and GR and Turbo emitter has been used with discharge of 4 L.h-1 which gave 94.68, 91.74 and 90%. Likewise, the most acceptable variety discharge ratio was observed when the same prior pipe and emitters were used with discharge of 4 L.h-1 by giving 7.23, 11.90 and 12.19 %.


Author(s):  
Xin Hui ◽  
Haijun Yan ◽  
Yuncheng Xu ◽  
Haibin Tan

Abstract Droplet shear stress is the main cause of soil erosion under sprinkler irrigation, and the effect of droplet impact angle on the shear stress distribution cannot be ignored. In this study, a ball-driven sprinkler was selected to investigate the radial distributions of droplet impact angles under three operating pressures (0.25, 0.30, and 0.35 MPa) and two nozzle diameters (1.9 and 2.2 mm), which are commonly used in agricultural irrigation. The effect of droplet impact angles on the distances from the sprinkler, droplet impact velocities, and shear stresses were analyzed by a 2DVD instrument. Irrespective of the nozzle diameter or operating pressure, the droplet velocities and impact angles near the sprinkler were distributed at 1.0–5.5 m s−1 and 70–90°, respectively, and the droplet shear stress increased with the distance from the sprinkler. Suitable operating pressure and distance from the sprinkler significantly reduced the droplet shear stress. Although the nozzle diameter had a certain effect on the maximum shear stress, the overall effect was insignificant. We developed the models for the radial distribution of droplet shear stresses, which were in good agreement with the measurement. This study proposes a new method for accurately predicating the soil erosion under sprinkler irrigation.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 446B-446
Author(s):  
B. Sanden ◽  
L. Wu ◽  
J.P. Mitchell ◽  
L. Pan ◽  
R. Strohman

This research tests the hypothesis that decreasing lateral spacing from 45 to 35 feet in solid-set sprinkler systems increases the uniformity of irrigation water distribution and improves water and N fertilizer use efficiencies. Three different spacings between sprinkler laterals (35', 40', and 45') were set up in three blocks in a 60-acre commercial carrot field in Western Kern County in California's San Joaquin Valley. Determinations of irrigation water distribution uniformity, yields, crop water use, plant growth, and nitrate leaching were made. Mean sprinkler distribution uniformities (DU) were found to be 80.6%, 78.1%, and 86% for the 35-, 40-, and 45-ft spacings, respectively. Total carrot yield and quality did not differ significantly among the three spacings, corroborating the finding that irrigation uniformities were similar among the treatments. Although the three lateral spacings evaluated in this initial experiment did not result in major differences in irrigation uniformity, total yields, or quality, the findings of this initial stage of our research are significant. They point to the need for new assessments of currently used protocols for evaluating sprinkler irrigation management of water and nitrogen fertilizer if they can be confirmed by repeated trials in coming years.


Sign in / Sign up

Export Citation Format

Share Document