scholarly journals Analysis of Water Distribution Uniformity for Two Types of Sprinklers used in Sprinkler Irrigation Systems under Various Climatic and Hydraulic Conditions

2015 ◽  
Vol 19 (73) ◽  
pp. 1-9
Author(s):  
V. Rahmatabadi ◽  
M. Behzad ◽  
S. BorumandNasab ◽  
H. Sakhaei Rad ◽  
◽  
...  
Irriga ◽  
2008 ◽  
Vol 13 (1) ◽  
pp. 47-62 ◽  
Author(s):  
Eguimar Amorim Maciel de Souza ◽  
Paula Cristina de Souza ◽  
Márcio Antônio Vilas Boas

AVALIAÇÃO DO DESEMPENHO DE SISTEMAS DE IRRIGAÇÃO POR ASPERSÃO CONVENCIONAL FIXO E GOTEJAMENTO EM VILA RURAL  Eguimar Amorim Maciel de Souza; Paula Cristina de Souza; Márcio Antônio Vilas BoasCentro de Ciências Exatas e Tecnológicas, Universidade do Oeste do Paraná,  Cascavel , Pr, [email protected]  1 RESUMO           O manejo racional da irrigação consiste na aplicação da quantidade necessária de água às plantas no momento correto. É recomendável após a instalação de um sistema de irrigação, proceder-se a testes de campo, com o objetivo de se verificar a adequação da irrigação recomendando, quando necessário, ajustes na operação e, principalmente, no manejo. O propósito deste trabalho foi avaliar dois sistemas de irrigação, sendo um por aspersão convencional fixo e outro por gotejamento,  implantados na Vila Rural Flor do Campo, localizada na região Noroeste do Estado do Paraná, através da determinação dos parâmetros de uniformidade e eficiência de distribuição de água.  Foram utilizadas as metodologias propostas na norma ABNT NBR ISO 7749-2, Asae (1995) e por Keller & Karmeli (1975).   Foram realizados trinta ensaios em cada sistema de irrigação. Para o sistema de irrigação por aspersão foi obtido  CUC  de 77,9%, considerado abaixo do valor mínimo aceitável de 80%, sendo que  a velocidade do vento variou de 0 a 2,4 m s-1. As eficiências de aplicação (Ea) e armazenagem (Es) obtidas neste sistema foram, respectivamente, de 77,0% e 48,8%. No sistema de irrigação por gotejamento foi obtido CUC de 93,7% considerado valor excelente. A Uniformidade de Emissão (UE) encontrada foi de 89,3% sendo considerada boa. As eficiências de aplicação (Ea) e armazenagem (Es) obtidas neste sistema foram, respectivamente, de 100% e 65,0 %. UNITERMOS: Irrigação, aspersão convencional, gotejamento,       uniformidade, eficiência,  avaliação.  SOUZA, E. A. M.; SOUZA, P.C.; VILAS BOAS, M. A. PERFORMANCE EVALUATION OF FIXED CONVENTIONAL ASPERSION AND DRIPPING IRRIGATION SYSTEMS IN  A RURAL VILLAGE  2 ABSTRACT The rational handling of the irrigation consists of the application of the necessary amount of water to the plants at the correct moment. After the installation of an irrigation system, it is recommended the field tests be carried out in order to  verify the adequacy of the recommended irrigation and , when necessary, to adjust the operation and, mainly, the handling. The aim of this work was to evaluate two irrigation  systems,  a fixed conventional aspersion system and a dripping one, installed in the l Flor do Campo, a rural village located in the Northwest of Paraná state, through the determination of the parameters of water distribution uniformity and efficiency. The methodologies used were according to the  ABNT NBR ISO 7749-2 norm, Asae (1995) and for Keller & Karmeli (1975). Thirty assays in each irrigation system were tested. In the irrigation system with  aspersion CUC of 77.9%, which is considered below the minimum acceptable value of 80%, was found  considering that the wind speed varied from   0 to  2.4 ms-1. The efficiencies of application (Ea) and storage (Es) obtained in this system were 77.0% and 48.8 %, respectively. In the dripping  irrigation system, a CUC of 93.7%, considered an excellent value,  was found. The EU was 89.3% and considered good. The efficiencies of application (Ea) and storage (Es) gotten in this system were  100% and 65. 0 %, respectively. KEY WORDS: Irrigation, conventional aspersion, dripping, uniformity, efficiency, evaluation.


Author(s):  
Xin Hui ◽  
Haijun Yan ◽  
Lin Zhang ◽  
Junying Chen

Abstract To improve the water application uniformity for sprinkler irrigation on sloping land, indoor tests were conducted on an artificial slope (slopes of 0, 0.05, 0.10 and 0.15) to evaluate the effects of two riser orientations, vertical (VO) and perpendicular (PO) to the slope, on the uniformity of sprinkler rotation, radius of throw, water distribution of an individual sprinkler and the overlapped water application uniformity (WAU). Compared with the VO, the PO could effectively improve the water distribution on sloping land and minimize the risk of soil erosion. Additionally, the PO was superior in the WAU, and a rectangular arrangement could dramatically enhance the WAU at smaller sprinkler spacing, while larger acceptable sprinkler spacing was accepted in a triangular arrangement. The riser orientation and sprinkler spacing had the most significant effect on the WAU, followed by the slope and sprinkler arrangement, suggesting that the adjustment of riser orientation or sprinkler spacing was helpful in improving the WAU. However, from the aspects of investment cost and installation convenience for irrigation projects, the method of PO was recommended. Therefore, when designing the sprinkler irrigation systems on the slope, choosing PO is the simplest and most effective way to achieve good irrigation uniformity.


Irriga ◽  
2016 ◽  
Vol 21 (4) ◽  
pp. 631-647 ◽  
Author(s):  
Jorge Tomoyoshi Tamagi ◽  
Miguel Angel Uribe Opazo ◽  
Jerry Adriani Johann ◽  
Marcio Antonio Vilas Boas

UNIFORMIDADE DE DISTRIBUIÇÃO DE ÁGUA DE IRRIGAÇÃO POR ASPERSORES COMPENSANTES E NÃO COMPENSANTES EM DIFERENTES ALTURAS  JORGE TOMOYOSHI TAMAGI1; MIGUEL ANGEL URIBE-OPAZO2; JERRY ADRIANI JOHANN2 E MARCIO ANTONIO VILAS BOAS2 1 Universidade Estadual do Oeste do Paraná - UNIOESTE, Doutorando em Engenharia Agrícola no Programa de Pós-Graduação em Engenharia Agrícola – PGEAGRI. Rua Universitária, 2069 – Jd. Universitário – Caixa Postal 711 – CEP 85819-110 – Cascavel – PR, e-mail: [email protected] UNIOESTE, campus de Cascavel – PR, professores e pesquisadores do PGEAGRI, e-mails: [email protected]; [email protected]; [email protected].  1 RESUMO Este trabalho tem como finalidade contribuir para o desenvolvimento de técnicas adequadas para avaliação de sistemas de irrigação por aspersão, considerando que a uniformidade de distribuição da água afeta diretamente a lâmina bruta de irrigação. O experimento foi conduzido na região Norte de Cascavel, Paraná, (24º 55’ 04” latitude Sul, 53º 28’ 31” longitude Oeste e altitude de 785 m). Foram utilizadas duas parcelas de 10 x 10 m, denominadas S1 e S2, modificando-se somente a altura dos aspersores de 1,5 m para 1,0 m, respectivamente. Em cada parcela foram instalados 100 coletores, 4 aspersores super 10 bocal azul, compensante e, após 32 ensaios, foram substituídos por 4 aspersores super 10 bocal azul, não compensante. Foram determinados os seguintes coeficientes: Uniformidade de Christiansen, Uniformidade de Distribuição e Uniformidade Estatístico. Foram realizados estudos de inferência estatística e criadas cartas de controle para a análise do controle estatístico do processo, além dos índices de capacidade de processo (Cp) e desempenho do processo (Cpk). Os resultados mostraram que o aspersor compensante apresentou melhor desempenho à altura de 1,5 m (C-1,5 m) e que, entre as alturas de 1,0 m e 1,5 m, as melhores uniformidades de distribuição de água ocorreram na altura de 1,5 m. Palavras-chave: inferência estatística; cartas de controle; capacidade de processo.  TAMAGI, J. T.; URIBE-OPAZO, M. A.; JOHANN J. A.; VILAS BOAS, M. A. IRRIGATION WATER DISTRIBUTION UNIFORMITY BY COMPENSATING AND NON-COMPENSATING SPRINKLERS AT DIFFERENT HEIGHTS  2 ABSTRACT The uniformity of water application is an important factor to be considered in the assessment of sprinkler irrigation systems, since it directly affects gross irrigation depth, This work is a contribution for the development of appropriate techniques for assessment of results to improve the system. This trial was conducted  in the Northern region of Cascavel-PR (24º 55' 04" S, 53º 28' 31" W). Two 10 x 10 m plots were used and described as S1 and S2, according to the heights’ change of sprinklers, from 1.5 to 1.0 m, respectively. There were 100 collectors in each plot, plus 4 Super 10-blue-nozzle pressure compensating sprinklers, and, after 32 essays, they were replaced by 4 Super 10-blue-nozzle non pressure compensating sprinklers. The following coefficients were determined: Christiansen uniformity coefficient (CUC), coefficient of uniformity of distribution (CUD) and statistical uniformity coefficient (SUC). Statistical inference studies were carried out and control charts were generated to analyze the statistical control of the process, as well as Cp and Cpk indices. The results showed the best performance with the pressure compensating sprinklers irrigation at 1.5 m high (C-1.5 m) and that among the 1.0 m and 1.5 m heights the best water distribution uniformity was with the 1.5 m height. Keywords: Statistical analysis; Control Charts; Process Capacity.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 446B-446
Author(s):  
B. Sanden ◽  
L. Wu ◽  
J.P. Mitchell ◽  
L. Pan ◽  
R. Strohman

This research tests the hypothesis that decreasing lateral spacing from 45 to 35 feet in solid-set sprinkler systems increases the uniformity of irrigation water distribution and improves water and N fertilizer use efficiencies. Three different spacings between sprinkler laterals (35', 40', and 45') were set up in three blocks in a 60-acre commercial carrot field in Western Kern County in California's San Joaquin Valley. Determinations of irrigation water distribution uniformity, yields, crop water use, plant growth, and nitrate leaching were made. Mean sprinkler distribution uniformities (DU) were found to be 80.6%, 78.1%, and 86% for the 35-, 40-, and 45-ft spacings, respectively. Total carrot yield and quality did not differ significantly among the three spacings, corroborating the finding that irrigation uniformities were similar among the treatments. Although the three lateral spacings evaluated in this initial experiment did not result in major differences in irrigation uniformity, total yields, or quality, the findings of this initial stage of our research are significant. They point to the need for new assessments of currently used protocols for evaluating sprinkler irrigation management of water and nitrogen fertilizer if they can be confirmed by repeated trials in coming years.


2018 ◽  
Vol 8 (12) ◽  
pp. 2601 ◽  
Author(s):  
Saeed Rad ◽  
Lei Gan ◽  
Xiaobing Chen ◽  
Shaohong You ◽  
Liangliang Huang ◽  
...  

Sprinkler irrigation systems are widely used in medium and large scale farms in different forms. However less types are available to apply in small farms due to their high costs. The current study was done according to a novel cost effective design for a semi-permanent sprinkler irrigation system for small farm owners. The new layout known as Corner Pivot Lateral (CPL) was examined in irrigation test center at Lijian Scientific and Technological Demonstration Park, at Nanning city, China. CPL was implemented without a main/sub mainline pipe, by applying a single pivoting lateral at the corner of the plot that directly connected to the resource to convey water from the pump. The lateral moves around the corner using a rotating elbow in a quadrant pattern manually to cover the entire farm. A conventional semi-permanent system was applied for the same farm as reference. A cost analysis on the required components as well as annual operational costs was carried out for comparison and control. Results showed that a lower system component would be needed for the CPL method. Overall, more than a 15% capital cost reduction with 7% annual cost decrement was achieved for CPL in this experiment comparatively. The Catch can technique was applied to examine the CPL system’s efficiency and 79% water distribution uniformity around the sprinkler was obtained. This new method can encourage small estate holders to switch from traditional to pressurized systems which optimizes water application costs.


2008 ◽  
Vol 48 (3) ◽  
pp. 285 ◽  
Author(s):  
C. J. O'Neill ◽  
E. Humphreys ◽  
J. Louis ◽  
A. Katupitiya

Irrigation farmers in the Murray–Darling Basin of Australia are under considerable pressure to reduce the amount of water they use for irrigation, while sustaining production and profitability. Changing from surface to pressurised irrigation systems may provide some or all of these outcomes; however, little is known about the performance of alternative irrigation methods for broadacre annual crops in this region. Therefore, a demonstration site for comparing furrow, subsurface drip and sprinkler irrigation was established on a representative clay soil in the Coleambally Irrigation Area, NSW. The performance of maize (Zea mays L.) under the three irrigation systems was compared during the 2004–05 season. Subsurface drip irrigated maize out-performed sprinkler and furrow irrigated maize in terms of grain yield (drip 11.8 t/ha, sprinkler 10.5 t/ha, furrow 10.1 t/ha at 14% moisture), net irrigation water application (drip 5.1 ML/ha, sprinkler 6.2 ML/ha, furrow 5.3 ML/ha), net irrigation water productivity (drip 2.3 t/ML, sprinkler 1.7 t/ML, furrow 1.9 t/ML) and total water productivity (drip 1.7 t/ML, sprinkler 1.4 t/ML, furrow 1.3 t/ML). Thus, subsurface drip irrigation saved ~30% of the total amount of water (irrigation, rain, soil water) needed to produce the same quantity of grain using furrow irrigation, while sprinkler irrigation saved ~8% of the water used. The higher net irrigation with sprinkler irrigation was largely due to the lower soil water content in the sprinkler block at the time of sowing. An EM31 survey indicated considerable spatial soil variability within each irrigation block, and all irrigation systems had spatially variable water distribution. Yield variability was very high within all irrigation systems, and appeared to be more strongly associated with irrigation variability than soil variability. All irrigation blocks had large patches of early senescence and poor cob fill, which appeared to be due to nitrogen and/or water deficit stress. We expect that crop performance under all irrigation systems can be improved by improving irrigation, soil and N management.


2008 ◽  
Vol 65 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Túlio Assunção Pires Ribeiro ◽  
José Euclides Stipp Paterniani ◽  
Christiane Coletti

Many producers use drippers for trickle irrigation systems for flower production in the field and in protected environments. A frequent problem in this type of irrigation system is the clogging of drippers, which is directly related to water quality and filtering system efficiency. The objective of this study was to conduct an experimental investigation to evaluate the efficiency of using nitric acid and sodium hypochlorite to unclogg drippers due to the use of water with high algae content. The evaluation was conducted in six, 4216 m² greenhouses, each with two sectors comprised of ten spaces or lines, totaling 12 sectors of a dripper irrigation system in a rose producing property of Holambra, State of SP, Brazil. Chemical and physical analyses and the bacteriological count in water were carried out in the three water sources that supply the irrigation system to check the factors causing the clogging. Evaluations were carried out on water distribution uniformity in all sectors before and after chemical treatment in order to evaluate efficiency. The treatment improved water distribution uniformity and a lead to a reduction in the coefficient of variation (CV) for dripper flow in all sectors. There was a good correlation between CV and the water distribution uniformity index. Therefore, this is an excellent method to be used to unclogg drippers due to biological problems.


2017 ◽  
Vol 2 (2) ◽  
pp. 430-438
Author(s):  
Ariswandi Putra ◽  
Ichwana Ichwana ◽  
Susi Chairani

Abstrak. Sistem irigasi curah pada penerapannya dapat menghemat air serta waktu yang dibutuhkan untuk menyiram tanaman. Sistem irigasi curah mendistribusikan air dari pompa air sebagai sumber tekanan melalui sistem perpipaan hidrolika dalam bentuk curahan air yang disemprotkan ke udara, kemudian curahan air tersebut jatuh ke tanah maupun akar-akar  tanaman. Ketinggian pipa merupakan salah satu faktor penting yang dapat menentukan kinerja sistem irigasi curah terhadap keseragaman distribusi atau penyebaran curahan air ke tanaman. Hasil penelitian ini menjelaskan bahwa ketinggian pipa memberi pengaruh terhadap semua parameter yang diamati, yakni koefisien keseragaman distribusi air (CU), laju penyiraman air dan jarak lempar air. Nilai rata-rata debit nozzle yang diperoleh adalah 3,4007 liter/menit dan nilai rata-rata laju penyiraman air 4897,032 mm/hari. Nilai koefisien keseragaman distribusi air adalah sebesar 99,017 % pada riser 15 cm, 99,015 % pada riser 20 cm dan 99,016 % pada riser 25 cm. Kemudian nilai rata-rata jarak lempar air 127,33 cm. Adapun untuk mengetahui pengaruh ketinggian pipa pada sistem irigasi curah adalah dengan menggunakan persamaan regresi linear. Maka nilai regresi linear yang dihasilkan adalah sebesar 75,4 % dari seluruh parameter yang diamati, yakni koefisien keseragaman distribusi air (CU), laju penyiraman air dan jarak lempar air. Kata kunci : Sistem irigasi curah, ketinggian pipa. Abstract. The sprinkler irrigation system in the application of bulk can save water as well as the time needed for watering plants. The sprinkler irrigation system to distribute the water from the water pump as the source pressure through the piping system hydraulics in the form of a drink of water that is sprayed into the air, then the water flow fell to the ground and the roots of plants. The riser is one of the important factors that can determine the performance of irrigation systems bulk of the uniform distribution or dissemination of water flow into the plant. The results of this study explains that the height of the pipe to give effect to all parameters were observed, namely water distribution coefficient of uniformity (CU), the rate of watering and water throwing distance. The average value obtained discharge nozzle is 3.4007 liters / min and the average value of the rate of watering 4897.032 mm / day. The coefficient of uniformity of water distribution is equal to 99.017% at 15 cm riser, the riser 99.015% 99.016% 20 cm and 25 cm on the riser. Then the average value of 127.33 cm water throwing distance. As for the height of the pipe to determine the effect on the bulk of irrigation systems is to use linear regression equation. Then the resulting linear regression value is equal to 75,4 % of all observed parameters, ie water distribution coefficient of uniformity (CU), the rate of watering and water throwing distance. Keywords : The sprinkler irrigation system, the riser.


Sign in / Sign up

Export Citation Format

Share Document