scholarly journals Abrasion and Physical Properties of Rattan Cane (Calamus deeratus) Fibre Based Epoxy Composites

Author(s):  
Osita Obiukwu ◽  
John Igboekwe

The effects of fibre content (5–30 wt%) and fibre treatment on abrasion, water absorption, specific gravity, and density properties of epoxy/rattan cane fibre composites were studied. Epoxy resin reinforced with the alkaline treated rattan cane fibre fibres was produced by compression technique in predetermined proportions. Abrasion and physical properties tests were carried out on the developed composites. The results showed that the reinforced composite samples have better enhancement in all the properties tested than the unreinforced control sample. Least Water Absorption (WA) value of 1.4 % were obtained within the 1 week and 2 week for the reinforced samples. Samples reinforced with 10 wt. % rattan fibres had the highest abrasion resistance, while the sample with 5 wt.% rattan fibre addition had the best water absorption resistance. The products of this research could find applications in automotive fields where exposure to moisture and wear are encountered.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajibola B. Oyedeji ◽  
Olajide P. Sobukola ◽  
Ezekiel Green ◽  
Oluwafemi A. Adebo

AbstractThe physical properties and water absorption kinetics of three varieties of Mucuna beans (Mucuna pruriens, Mucuna rajada and Mucuna veracruz) were determined in this study. Physical properties including length, width, thickness, geometric mean diameter, sphericity, porosity, bulk density, area, volume and one thousand seed mass were calculated while hydration kinetics was studied by soaking Mucuna beans in water at 30 °C, 40 °C and 50 °C and measuring water uptake at 9 h interval. Peleg’s equation was used to model the hydration characteristics and Arrhenius equation was used to describe the effect of temperature on Peleg’s rate constant k1 and to obtain the activation energies for soaking. Significant variations were observed in almost all the physical properties of the different varieties, however, there were no significant differences (p < 0.05) in their thicknesses and bulk densities. The effectiveness of fit of Peleg’s model (R2) increased with increase in soaking temperature. Peleg’s rate constant k1 decreased with increase in soaking temperature while k2 increased with temperature increase. Activation energies of Mucuna pruriens, Mucuna rajada and Mucuna veracruz were 1613.24 kJ/mol, 747.95 kJ/mol and 2743.64 kJ/mol, respectively. This study provides useful information about the properties of three varieties of Mucuna beans that could be of importance to processors and engineers for process design and optimization.


2021 ◽  
pp. 004051752110519
Author(s):  
Yecheng Fan ◽  
Shen Ziyue ◽  
Shaohua Zeng ◽  
Pengpeng Chen ◽  
Ying Xu ◽  
...  

To improve the interfacial adhesion of glass fiber (GF)/epoxy composites, the GF surface was treated by dispersing aliphatic diamine-functionalized multi-walled carbon nanotubes (MWCNTs). Carboxyl MWCNTs were first modified by aliphatic diamine with different alkyl chain lengths and then deposited on the surface of GF. The effect of aliphatic diamine chain lengths on the MWCNTs’ dispersion and interfacial properties of resultant composites was investigated in detail. The results showed that uniform dispersion of MWCNTs and strong fiber/matrix interfacial adhesion could be achieved, based on the grafting of 1,8-octanediamine onto MWCNTs. Compared with the control sample, the interlaminar shear, flexural, and tensile strengths of the treated composites increased by 41%, 29%, and 30%, respectively; the interlaminar fracture toughness and storage modulus in the glass region were significantly enhanced; and the glass transition temperature increased by more than 8°C. This work demonstrates that the carbon nanotubes functionalized by appropriate chain lengths of amine modifier can improve the fiber/matrix interfacial interactions and thus enhance the strength, toughness, and stiffness of fiber-reinforced composites.


Author(s):  
M. Noryani ◽  
H.J. Aida ◽  
R. Nadlene ◽  
M.T. Mastura ◽  
M.A. Shaharuzaman

Author(s):  
Bindia Sahu ◽  
Jaya Prakash Alla ◽  
Gladstone Christopher Jayakumar

Leather tanning is a stabilisation process of skin fibers. This is achieved by the interaction of collagen amino acids with tanning agents to stabilise skin from putrefaction. Tanning of collagen with oil is a special class of tanning known as chamois tanning. Chemically, the oil tanning involves oxidation of unsaturation present in the oil, which is generally achieved by exposing oil treated skins to air. In this study, Benzoyl peroxide has been used as an accelerating agent for oxidation of unsaturated bonds present in the linseed oil for oil tanning process. Results shows remarkable reduction in tanning duration from fifteen days to two days. The chamois leathers prepared using oxidation accelerant (Benzoyl peroxide) have been evaluated for physical properties such as water absorption (611%), tensile strength (18 N/mm2) and percentage of elongation (66 %) which are found to be better than control leathers.


2015 ◽  
Vol 754-755 ◽  
pp. 71-76
Author(s):  
Mohd Firdaus Omar ◽  
Lu Yew Wei ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin

In this work, UHMWPE reinforced composites containing hybrid zinc oxide (ZnO) and chitosan particles were prepared via the hot compression technique. The effect of ZnO contents (10, 20, 30 wt.%) and chitosan contents (1, 2, 3 wt.%) on the thermal properties of UHMWPE/ZnO and UHMWPE/Chitosan-ZnO reinforced composites were successfully investigated using DSC and TGA analysis, respectively. Based on DSC results, both UHMWPE/ZnO and hybrid composites did not record significant changes in the melting temperatures (Tm). The heat fusion enthalpy (Hm) and degree of crystallinity (Xc) of hybrid composites were found to be higher than UHMWPE/ZnO composites. As the TGA results shown, hybrid composites were also found to have higher thermal stability than UHMWPE/ZnO composites at 10 % and 50 % weight loss level. Overall, the UHMWPE/ZnO + 3 wt.% Chitosan hybrid reinforced composite recorded comparable mechanical properties and better thermal properties than neat UHMWPE.


2014 ◽  
Vol 3 (6) ◽  
pp. 107 ◽  
Author(s):  
Sushil K. Singh ◽  
K. Muthukumarappan

<p>Nutritionally balanced ingredient blends for catla (<em>Catla catla</em>), belonging to the family Cyprinidae, were extruded using single screw extruder. The extrusion was carried out at five levels of soy white flakes content (21%, 29%, 40%, 52%, and 59% db), five levels of moisture content (15, 19, 25, 31, and 35% db) and five levels of barrel temperature (100, 110, 125, 140, and 150 ºC) using three different die nozzles (having L/D ratios 3.33, 5.83, and 7.25). Blends with net protein content of 32.5% contains soy white flakes, along with high protein distillers dried grains (HP-DDG), corn flour, corn gluten meal, fish meal, vitamin, and mineral mix. A central composite rotatable design (CCRD) and  response surface methodology (RSM) was used to investigate the significance of independent and interaction effects of the extrusion process variables on the extrudates physical properties namely pellet durability index, bulk density, water absorption and solubility indices and expansion ratio. Quadratic polynomial regression equations were developed to correlate the product responses and process variables as well as to obtain the response surfaces plots. The independent variables had significant (<em>P </em>&lt; 0.05) effects on physical properties of extrudates: (i) higher soy white flakes content increased the pellet durability index and water absorption index, but decreased the water solubility index, (ii) higher temperature decreased pellet durability index, bulk density and water solubility index, (iii) increased L/D ratio from 3.33 to 7.25 increased the pellet durability index, expansion ratio but decreased the bulk density of the extrudates.</p>


2022 ◽  
Vol 30 ◽  
pp. 096739112110609
Author(s):  
Atik Mubarak Kazi ◽  
Ramasastry DVA

The influence of fibre orientation on physical, mechanical and dynamic mechanical properties of Hibiscus sabdariffa fibre composites has been studied. The composites with longitudinal (0°), transverse (90°) and inclined (45°) fibre orientation were prepared using the hand layup technique. ASTM standards were used for characterization of continuous Hibiscus sabdariffa fibre composites. The composite with longitudinally placed fibres yields improved mechanical characteristics. The addition of longitudinal (0°) oriented continuous Hibiscus sabdariffa fibres to the epoxy enhances tensile strength by 460%, flexural strength by 160% and impact strength by 603% compared to neat epoxy. The longitudinal (0°) fibre oriented composite offers higher resistance to water absorption and thickness swelling compared to other types of composites. All continuous Hibiscus sabdariffa fibre epoxy composites possess an improved storage modulus than the neat epoxy resin. The glass transition temperature of continuous Hibiscus sabdariffa fibre composites is 8%–31% lower than that of neat epoxy. Scanning electron microscopy (SEM) images confirm the existence of voids in the matrix, fibre pullout and crack propagation near the fibre bundle, which indicates the stress transfer between fibre and matrix is non-uniform.


Sign in / Sign up

Export Citation Format

Share Document