scholarly journals Diffraction of Light by Acoustic Waves in Liquids

Author(s):  
K.A.I.L. Wijewardena Gamalath ◽  
G.L.A.U. Jayawardena

For the acusto-optic interactions in liquids, an equation for the diffraction light intensity was obtained in terms of Klein Cook parameter Q. With optimized parameters for Q, incident light wave length of λ = 633 nm, sound wave length of Λ = 0.1 mm, acusto-optic interaction length L=0.1 m, and refractive index of the liquid in the range of 1 to 2, the existence of ideal Raman-Nath and Bragg diffractions were investigated in terms of phase delay and incident angle. The ideal Raman-Nath diffraction slightly deviated when the Klein Cook parameter was increased from 0 to 1 for low phase delay values and for large phase delay, the characteristics of the Bessel function disappeared. Higher value of Klein Cook parameter gave Bragg diffraction and ideal Bragg diffraction was obtained for Q ~100. A slight variation of the incident angle from Bragg angle had a considerable effect on Bragg diffraction pattern. Klein Cook parameter with the change of acoustic wave frequency was investigated for liquids with refractive index in the range1.3-1.7 and their diffraction patterns were compared with practically applicable acusto-optic crystals. For acusto-optic diffractions in liquids, sound velocity plays an important role in Bragg regime with Q increasing with increasing acoustic frequency. As acoustic wave frequency exceeded 10 MHz most of the liquids reached Bragg regime before these crystals.

2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
V. M. Kotov ◽  
S. V. Averin

Bragg diffraction which provides effective acoustooptic interaction of three-color radiation with a single acoustic wave at a high frequency of sound is proposed and tested in a single crystal of paratellurite at the wavelengths of λ= 0.488, 0.514, and 0.633 μm. Maximal diffraction efficiency of radiation with λ=0.633 μm at acoustic frequency of 150 MHz is 88% and that with λ= 0.488 μm and λ=0.514 μm is 60%. In diffraction efficiency range from 0 to 40% the dependence of all beams on acoustic power is the same.


A new measurement of the velocity of electromagnetic radiation is described. The result has been obtained, using micro-waves at a frequency of 24005 Mc/s ( λ = 1∙25 cm), with a form of interferometer which enables the free-space wave-length to be evaluated. Since the micro-wave frequency can also be ascertained, phase velocity is calculated from the product of frequency and wave-length. The most important aspect of the experiment is the application to the measured wave-length of a correction which arises from diffraction of the micro-wave beam. This correction is new to interferometry and is discussed in detail. The result obtained for the velocity, reduced to vacuum conditions, is c 0 = 299792∙6 ± 0∙7 km/s.


2019 ◽  
Vol 27 ◽  
pp. 11-20 ◽  
Author(s):  
Mohammed T. Hussein ◽  
Reem R. Mohammed

The optical absorption spectrum, Photoluminesces, and non-linear optical properties for Copper Phthalocyanine (CuPc) thin films (150,300 and 450 nm) respectively have been investigated via pulsed laser deposition technique. The absorption spectrum indicted that there are two bands one in UV around 330 nm which called B-band and the second in Visible around 650nm which called Q-band. Photoluminescence spectrum related to deposit samples has been determined with different thicknesses. From closed and open aperture Z-scan data non-linear absorption coefficient and non-linear refractive index have been calculated respectively using He-Ne laser which have beam waist of (24.2 μm), wave-length of (632.8 nm) and Rayleigh thickness was 2.9 mm. Through dividing closed by open apertures, non-linear refractive index was calculated accurately. Finally, the study also showed the suitability of the deposited films as an optical limiter at the wavelength 632.8 nm.


The refractive index of sulphur dioxide for a single wave-length has been measured several times, and in a recent paper it was shown that nearly all the values, when corrected for density, approximated to μ –1=0·000661 for sodium light. The dispersion has only been measured once, by Ketteler, who found the numbers given in the second column below— When corrected for density, these become the numbers given in the third column.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Haythem Bany Salameh ◽  
Hazem Khrais

AbstractIn this paper, we develop a novel demultiplexer design for Coarse Wavelength Division Multiplexer (CWDM). The device consists of multi-layer inhomogeneous semi-conductor material, where the refractive index of each layer is graded according to a predefined profile. The proposed design exploits the ray’s spatial shift that results from the material dispersion as different wavelengths propagate through the different layers of the device. Our design forces the multiplexed light to refract after propagation for short distance within the device leading to smaller device size while providing the needed spatial shift between the ray’s of the adjacent multiplexed wavelengths. The proposed structure can be easily implemented using the well-established technology utilized in fabricating existing graded-index fibers. The impacts of the various design parameters (such as the incident angle, number of layers, the layer thickness, the spacing between adjacent wavelengths, the refractive index difference) on the amount of achieved spatial shift between the adjacent wavelengths and the size of the device are investigated. Compared to previous proposed techniques, our device can be easily fabricated to provide higher spatial shift while reducing the device size with by controlling the different design parameters.


2015 ◽  
Vol 1105 ◽  
pp. 136-140
Author(s):  
Shinn Fwu Wang ◽  
Fu Hsi Kao ◽  
An Li Liu

In this paper, a new-type electro-optical sensor based on the total-internal reflections theory in heterodyne interferometry is proposed. The sensor is designed as a semi-circle shape. It is made of BK7 glass with the refractive index of 1.51509. And the end surface of the sensor is designed as a micro-mirror. The phase difference between s-and p-polarizations at the output of the optical fiber sensor can be obtained when a heterodyne optical source is launched into the electro-optical sensor at a suitable incident angle. By numerical calculation, the resolution of the system by using the intensity method can reach refractive index unit (RIU) in the measurement range of. The electro-optical sensor could be valuable for chemical, biological and biochemical sensing. It is with some advantages, such as, high resolution and stability, high sensitivity and real-time measurement.


2006 ◽  
Vol 39 (5) ◽  
pp. 749-751 ◽  
Author(s):  
Byeongdu Lee ◽  
Chieh-Tsung Lo ◽  
Soenke Seifert ◽  
Randall E. Winans

Grazing-incidence small-angle X-ray scattering (GISAXS) patterns of a silver behenate composite film, which has a typical layered structure, are described. The peak position of the film in the GISAXS pattern was varied depending on the incident angle, which was well described by taking into account the refraction and the reflection effects. Since the refractive index of samples depends on sample preparation, it is recommended that the measurement of silver behenate as a standard be done in conventional transmission mode to avoid any complexity.


Sign in / Sign up

Export Citation Format

Share Document