Wind Energy and the Hydrogen Economy

Author(s):  
S. A. Sherif ◽  
F. Barbir ◽  
T. N. Veziroglu

The hydrogen economy is an inevitable energy system of the future where the available energy sources (preferably the renewable ones) will be used to generate hydrogen and electricity as energy carriers, which are capable of satisfying all the energy needs of human civilization. The transition to a hydrogen economy may have already begun. This paper presents a review of hydrogen energy technologies, namely technologies for hydrogen production, storage, distribution, and utilization. Possibilities for utilization of wind energy to generate hydrogen are discussed in parallel with possibilities to use hydrogen to enhance wind power competitiveness.

2005 ◽  
Vol 11 (3) ◽  
pp. 105-113 ◽  
Author(s):  
Frano Barbir

Fuel cells with applications ranging from power generation to transportation need hydrogen as fuel. Hydrogen is not a source of energy, and hydrogen is not a readily available fuel. Hydrogen is more like electricity - an intermediary form of energy or an energy carrier. However, while electricity infrastructure is already in place, hydrogen infrastructure is practically nonexistent. It is this lack of hydrogen infrastructure that is considered to be one of the biggest obstacles to fuel cell commercialization. Commercialization of fuel cells, particularly for transportation and stationary electricity generation markets, must be accompanied by commercialization of hydrogen energy technologies, i.e., technologies for hydrogen production, distribution and storage. In other words, hydrogen must become a readily available commodity (not as a technical gas but as an energy carrier) before fuel cells can be fully commercialized. On the other hand, it may very well be that the fuel cells will become the driving force for development of hydrogen energy technologies. Fuel cells have many unique properties, such as high energy efficiency, no emissions, no noise, modularity, and potentially low cost, which may make them attractive in many applications even with a limited hydrogen supply. This creates what is often referred to as a 'chicken and egg problem' - does the development and commercialization of fuel cells come before development of hydrogen energy technologies or must hydrogen infrastructure be in place before fuel cells can be commercialized? Hydrogen as fuel cannot compete in today's market with the very fuels it is produced from (including electricity). Also, as any new technology, hydrogen energy technologies, such as fuel cells, are in most cases initially more expensive than the existing mature technologies, even when real economics is applied. Hydrogen energy technologies are expensive because the equipment for hydrogen production and utilization is not mass-produced. It is not mass-produced because there is no demand for it, and there is no demand because it is too expensive. This is a closed circle, or another chicken-and-egg problem. The only way for hydrogen energy technologies to penetrate into the major energy markets is to start with those technologies that may have niche markets, where the competition with the existing technologies is not as fierce and/or where they offer clear advantage over the existing technologies regardless of the price. Another push for commercialization may be gained through governmental and/or international subsidies for technologies that offer some clear advantages. Once developed, these technologies may help reduce the cost of other related hydrogen technologies, and initiate and accelerate their widespread market penetrations. This article discusses the role of fuel cells in the future Hydrogen Economy, and explores possible transition paths and strategies.


Author(s):  
Sharmini Nakkela

Abstract: Modern study about utilizing energy from renewable energy sources was stimulus due to emerging oil crisis in older days due to uncontrolled use of conventional energy sources. Renewable Power Generation from wind and solar energy has become a significant proportion for the overall power generation in the grid. High penetration of Renewable Power Generation (RPG’s) effectreliable operation of bulk power system due to fluctuation of frequency and voltage of the network. The main objectives of high penetration of Renewable Power Generations in distribution system are Regulation of voltage, Mitigating voltage fluctuations due to flickers and Frequency control. The design and control of voltage regulation system using smart loads (SL’s) under large penetration of renewable energy system in distribution level is to be studied with the help of FACT devices like Static Compensator (STATCOM) and It is one of the fast active devices with accurate voltage regulation capability and most importantly for the sensitive/critical loads. Electric spring (ES) is proposed as compelling technique for guideline of framework voltage under fluctuating RPG's with next to no guide of correspondence framework [1]. It is a converter-based framework with self-commutated switches in span design, which is associated with non-basic burdens in series to go about as savvy load. These Smart Loads are controlled to direct voltage across basic burdens and hence partaking popular side administration. Expanded entrance of RPG’s, basically factor speed wind energy transformation framework is having impact on voltage and power quality [1][2]. In this paper, A contextual analysis of impact of variable speed wind energy framework on voltage is completed and which is demonstrated with fluctuating breeze speed. Execution examination of keen burdens are to be contrasted and existing receptive power compensator burdens and Improvement in voltage profile on test feeder is directed on a 3 Bus system and 15 Bus system. Keywords: Renewable energy system (RES), Electric spring (ES), STATCOM, Voltage Flicker, Smart load


Author(s):  
Leezna Saleem ◽  
Imran Ahmad Siddiqui ◽  
Intikhab Ulfat

Pakistan is the world's sixth most populous country, currently facing the worst energy crisis. Although rich in renewable resources, Pakistan's energy system relies mainly on fossil fuels and imported energy for its energy needs. This study aims to use an analytical hierarchy pro-cess to prioritize six renewable technologies for Pakistan, with four criteria and thirteen subcriteria. The results indicate that solar power is particularly well suited for Pakistan, as it gained 42% priority weightage in the final aggregation. Wind energy is ranked second with a priority weight of 24%, followed by hydro 13%, biomass 9%, ocean 8% and geothermal en-ergy 3%. Solar and wind energies accounted for nearly 66% of the total weightage. This result highlighted the significance of economic criteria for the selection of renewable technologies in Pakistan, with around 43% priority weightage. Environmental criteria gained 19% whereas socio-political criteria registered 14% and technical criteria 23% priority weightage. During the potential assessment of the research, it was concluded that although renewable resource development has not been allocated sufficient attention in Pakistan in the past, if the correct decisions are taken regarding the exploitation of these resources, this can remedy the country's hazardous dependence on fossil fuel and imported energy.


Author(s):  
Jin Iwatsuki ◽  
Shinji Kubo ◽  
Seiji Kasahara ◽  
Nobuyuki Tanaka ◽  
Hiroki Noguchi ◽  
...  

The Japan Atomic Energy Agency (JAEA) is conducting research and development on nuclear hydrogen production using High Temperature Gas-cooled Reactor and thermochemical water-splitting Iodine-Sulfur (IS) process aiming to develop large-scale hydrogen production technology for “hydrogen energy system”. In this paper, the present status of R&D on IS process at JAEA is presented which focuses on examining integrity of such components as chemical reactors, separators, etc. Based on previous screening of materials of construction mainly from the viewpoint of corrosion resistance in the harsh process conditions of IS process, it was planned to fabricate the IS components and examine their integrity in the process environments. At present, among the components of IS process plant consisting of three chemical reaction sections, i.e., the Bunsen reaction section, the sulfuric acid decomposition section and the hydrogen iodide decomposition section, key components in the Bunsen reaction section was fabricated.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Khalid Anwar ◽  
Sandip Deshmukh ◽  
Saad Mustafa Rizvi

Abstract Integrating renewable energy technologies in a single system is becoming more reliable to meet electrical demand of remote locations. Here, integration and the optimal use of various available energy resources in a stand-alone microgrid are investigated. An integrated renewable energy system (IRES) approach has been proposed and analyzed using homer software. Seven scenarios with different combinations of energy sources and storage systems have been investigated based on their levelized cost of energy (LCOE) supply and net present cost (NPC). The proposed IRES, which includes photovoltaic (PV), wind, and biogas, gives the least LCOE as $0.207/kW h without any policy intervention. This LCOE reduces to $0.12/kW h with policy intervention and consideration of carbon abetment cost. Moreover, sensitivity analysis has been carried out with variation in load, solar radiation, and wind speed. The NPC is found to be most sensitive to the variation of load and least sensitive to the variation of wind speed.


2020 ◽  
Vol 30 (4) ◽  
pp. 1063-1107 ◽  
Author(s):  
Marlene O’Sullivan

Abstract About 20 years ago Klepper (1997) has shown that the life cycle theory, initially introduced for products, can also be applied to the development of industries. The industries that were examined to establish this theory were marked by relatively stable market conditions that are typically driven by innovation. However, research on the transition of the energy system has shown that markets for new energy technologies are driven by political support. As yet an analysis of the industry life cycle of an industry which has developed under politically driven market conditions has not been conducted. Therefore this paper examines the development of the global wind energy industry and the relevance of national markets in a globalized world. The study is founded on a large empirical database. A comparative analysis of various international and national developments was conducted using descriptive statistical methods. The findings show that the global development derives from the sum of individual national developments. It reveals a strong influence of national markets on the development of their respective wind energy industry. Therefore these findings provide relevant insides for the political debate on market support mechanisms in wind energy.


2020 ◽  
Vol 5 (2) ◽  
pp. 81-92
Author(s):  
E.I. Muhibbudin ◽  
M.O. Adepoju ◽  
M Sanni ◽  
V. Okoroji ◽  
D.A. Bassey

Covid-19 pandemic lockdown has slowed down the world economic system. The pandemic has cleared the roads, close factories and grounded planes causing severe economic challenges. The damaging impact of the pandemic amid lockdown has been a blessing in guise for the environment because of significant drop in pollution level as transport and industrial sectors shutdown. Transport and industrial sectors are major contributors to environmental degradation through various emissions as a result of fossil fuel consumption. Energy consumed by transport and industrial sectors will have to shift to viable, readily available, clean, storable, economically and environmentally friendly with no carbon build up post Covid-19 pandemic. Hydrogen energy remains the best alternative option technologies containing greenhouse gas emission and pollutions of several forms. Hydrogen holds the potential to provide a clean, reliable, renewable and economical source of energy for meeting the growing and unending global energy needs post pandemic. The present paper explores prospect of hydrogen gas energy to serve as a competitive fuel option post pandemic and the economic feasibility. In this paper, the role of hydrogen as an energy carrier, hydrogen economy structure, potential of hydrogen economy, hydrogen production methods, hydrogen application and the economic and environmental significance of hydrogen as a viable fuel option post Covid-19 pandemic were thoroughly discussed. There will be a surge in demand and investment for hydrogen economy post Covid-19 to achieve decarbonization of transport and industrial sectors.


2021 ◽  
Vol 289 ◽  
pp. 01005
Author(s):  
A.S. Grachev

This article discusses the prospects for the use of hydrogen technologies in conjunction with renewable energy sources. A sim plified model of the power system of an isolated consumer using hydrogen technologies has been compiled. An experimental calculation of the electrical part of the system has been carried out. Based on the results obtained, conclusions are drawn about the further improvement of this model.


2021 ◽  
Vol 265 ◽  
pp. 04011
Author(s):  
Liudmila Nefedova ◽  
Kirill Degtyarev ◽  
Sophia Kiseleva ◽  
Mikhail Berezkin

The article discusses the possibilities of hydrogen production using renewable energy sources in Russia for energy storage and for export. The global trends in the development of green hydrogen energy reducing the CO2 emission are highlighted. The analysis of the potential for hydrogen production in regions of Russia using electricity from operating wind power plants (WPPs), as well as wind power projects planned for construction until 2024 has been carried out.


2020 ◽  
Vol 38 (6) ◽  
pp. 2099-2127
Author(s):  
Zheng Li ◽  
Wenda Zhang ◽  
Rui Zhang ◽  
Hexu Sun

The hydrogen energy system based on the multi-energy complementary of renewable energy can improve the consumption of renewable energy, reduce the adverse impact on the power grid system, and has the characteristics of green, low carbon, sustainable, etc., which is currently a global research hotspot. Based on the basic principles of hydrogen production technology, this paper introduces the current hydrogen energy system topology, and summarizes the technical advantages of renewable energy complementary hydrogen production and the complementary system energy coordination forms. The problems that have been solved or reached consensus are summarized, and the current status of hydrogen energy system research at home and abroad is introduced in detail. On this basis, the key technologies of multi-energy complementation of hydrogen energy system are elaborated, especially in-depth research and discussion on coordinated control strategies, energy storage and capacity allocation, energy management, and electrolysis water hydrogen production technology. The development trend of the multi-energy complementary system and the hydrogen energy industry chain is also presented, which provides a reference for the development of hydrogen production technology and hydrogen energy utilization of the renewable energy complementary system.


Sign in / Sign up

Export Citation Format

Share Document