Role of expression IL-23 pathway in myocardial injury after global ischemia and reperfusion/cross talk with IL-17

2020 ◽  
Vol 8 (1) ◽  
pp. 21-33
Author(s):  
Ling Ogiku ◽  
Runqiu Fujii

Myocardial injury caused by global ischemia/reperfusion is a complicated pathophysiological course, in which inflammation is thought to play an important role. Endothelial dysfunction plays a critical role in the pathogenesis of reperfusion injury in the myocardium. This role stems from the close proximity of the endothelium to neutrophils and other inflammatory cell types at the vascular interface during the critical early phase as well as the later phase of reperfusion. IL-17A is a cytokine expressed by a variety of cells in response to inflammatory cytokines that are released following tissue injury and/or inflammation. IL-17A induces epithelial cells to secrete neutrophil chemoattractants. The cytokine IL-23, which can be produced by epithelial cells, plays an important role in IL-17A production. Global myocardial injury induced by abdominal heart transplant model in IL-17A deficient (Il17a-/-), IL-23R deficient (Il23r-/-) and WT mice. Our data showed that cTn-I, neutrophil accumulation MCP-1 and ICAM-1 were significantly less in both Il17a-/- mice and Il23r/- mice than in WT controls. These two pathways may become possible therapeutic targets for the treatment of global ischemia induced myocardial injury.

Author(s):  
Gang Zhang ◽  
Kun Yu ◽  
Zhi Bao ◽  
Xiaofeng Sun ◽  
Dongying Zhang

Background. Ischemia/reperfusion (I/R) induced lethal tissue injury in myocardium. FoxM1 (Forkhead Box M1), expressed in proliferating cardiac progenitor cells, could regulate myocardial development. However, the role of FoxM1 in I/R-induced myocardial injury has not been reported yet. Methods. Rats were conducted with regional ischemia followed by reperfusion in myocardium through ligation of the left anterior descending coronary artery. Triphenyl-tetrazolium chloride staining was utilized to assess the infarct size. ELISA was performed to detect activities of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH). Protein expression of FoxM1 in heart tissues and H9c2 were determined by western blot. H9c2 cells were used to establish a hypoxia/reoxygenation cell model, and the cell viability, proliferation and apoptosis were evaluated by MTT, EdU (5-ethynyl-2’-deoxyuridine) staining and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, respectively. Adenovirus (Ad)-mediated over-expression of FoxM1 was injected into the anterior wall of the left ventricle of rats to evaluate the role of FoxM1 on in vivo I/R-induced myocardial injury. Results. FoxM1 was reduced in heart tissues isolated from rats post myocardial I/R injury. Forced FoxM1 expression increased cell viability and proliferation of hypoxia/reoxygenation-induced H9c2, while repressed the cell apoptosis with increased Bcl-2 and decreased Bax and cleaved caspase-3. Injection of Ad-FoxM1 suppressed infarct size of the heart and decreased activities of CK-MB and LDH. Conclusion. FoxM1 attenuated I/R-induced myocardial injury, providing potential therapeutic target for the disease.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
J. Tofferi ◽  
S. Peng ◽  
C. M. Moratz

Complement plays a critical role in the development of tissue injury in systemic lupus erythematosus. The B6.MRL/lpr mouse, an autoimmune prone mouse, exhibits accelerated and intensified tissue injury in the ischemia/reperfusion (IR) model. It has been demonstrated in nonautoimmune mice that inhibition of complement attenuates inflammatory tissue injury in IR models. The role of complement is not as clear in the B6.MRL/lpr strain. B6.MRL/lpr-C3 deficient animals are susceptible to injury, but long-term use of C3 inhibitors in B6.MRL/lpr-C3 competent animals restrained the development of nephritis. To clarify the role of complement in the B6.MRL/lpr strain, initial and midpathway inhibitors were evaluated. C1 inhibition attenuated tissue injury, thrombin deposition, and C5a generation in the B6.MRL/lpr strain. Downstream of C1 inhibition of C3 activation by administration of cobra venom factor suppressed IR injury in immune competent mice, but was not as effective in B6.MRL/lpr mice. C3 levels in both strains were decreased after cobra venom factor treatment; however, C5a generation, thrombin deposition, and tissue injury were observed in the B6.MRL/lpr strain. These studies suggest that in the B6.MRL/lpr autoimmune prone strain C1 activation leads to C3-dependent and C3-independent pathways of complement activation.


Author(s):  
W.T. Gunning ◽  
M.R. Marino ◽  
M.S. Babcock ◽  
G.D. Stoner

The role of calcium in modulating cellular replication and differentiation has been described for various cell types. In the present study, the effects of Ca++ on the growth and differentiation of cultured rat esophageal epithelial cells was investigated.Epithelial cells were isolated from esophagi taken from 8 week-old male CDF rats by the enzymatic dissociation method of Kaighn. The cells were cultured in PFMR-4 medium supplemented with 0.25 mg/ml dialyzed fetal bovine serum, 5 ng/ml epidermal growth factor, 10-6 M hydrocortisone 10-6 M phosphoethanolamine, 10-6 M ethanolamine, 5 pg/ml insulin, 5 ng/ml transferrin, 10 ng/ml cholera toxin and 50 ng/ml garamycin at 36.5°C in a humidified atmosphere of 3% CO2 in air. At weekly intervals, the cells were subcultured with a solution containing 1% polyvinylpyrrolidone, 0.01% EGTA, and 0.05% trypsin. After various passages, the replication rate of the cells in PFMR-4 medium containing from 10-6 M to 10-3 M Ca++ was determined using a clonal growth assay.


2020 ◽  
Vol 17 (4) ◽  
pp. 394-401
Author(s):  
Yuanhua Wu ◽  
Yuan Huang ◽  
Jing Cai ◽  
Donglan Zhang ◽  
Shixi Liu ◽  
...  

Background: Ischemia/reperfusion (I/R) injury involves complex biological processes and molecular mechanisms such as autophagy. Oxidative stress plays a critical role in the pathogenesis of I/R injury. LncRNAs are the regulatory factor of cerebral I/R injury. Methods: This study constructs cerebral I/R model to investigate role of autophagy and oxidative stress in cerebral I/R injury and the underline regulatory mechanism of SIRT1/ FOXO3a pathway. In this study, lncRNA SNHG12 and FOXO3a expression was up-regulated and SIRT1 expression was down-regulated in HT22 cells of I/R model. Results: Overexpression of lncRNA SNHG12 significantly increased the cell viability and inhibited cerebral ischemicreperfusion injury induced by I/Rthrough inhibition of autophagy. In addition, the transfected p-SIRT1 significantly suppressed the release of LDH and SOD compared with cells co-transfected with SIRT1 and FOXO3a group and cells induced by I/R and transfected with p-SNHG12 group and overexpression of cells co-transfected with SIRT1 and FOXO3 further decreased the I/R induced release of ROS and MDA. Conclusion: In conclusion, lncRNA SNHG12 increased cell activity and inhibited oxidative stress through inhibition of SIRT1/FOXO3a signaling-mediated autophagy in HT22 cells of I/R model. This study might provide new potential therapeutic targets for further investigating the mechanisms in cerebral I/R injury and provide.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1065
Author(s):  
Armando Rubio-Ramos ◽  
Leticia Labat-de-Hoz ◽  
Isabel Correas ◽  
Miguel A. Alonso

The MAL gene encodes a 17-kDa protein containing four putative transmembrane segments whose expression is restricted to human T cells, polarized epithelial cells and myelin-forming cells. The MAL protein has two unusual biochemical features. First, it has lipid-like properties that qualify it as a member of the group of proteolipid proteins. Second, it partitions selectively into detergent-insoluble membranes, which are known to be enriched in condensed cell membranes, consistent with MAL being distributed in highly ordered membranes in the cell. Since its original description more than thirty years ago, a large body of evidence has accumulated supporting a role of MAL in specialized membranes in all the cell types in which it is expressed. Here, we review the structure, expression and biochemical characteristics of MAL, and discuss the association of MAL with raft membranes and the function of MAL in polarized epithelial cells, T lymphocytes, and myelin-forming cells. The evidence that MAL is a putative receptor of the epsilon toxin of Clostridium perfringens, the expression of MAL in lymphomas, the hypermethylation of the MAL gene and subsequent loss of MAL expression in carcinomas are also presented. We propose a model of MAL as the organizer of specialized condensed membranes to make them functional, discuss the role of MAL as a tumor suppressor in carcinomas, consider its potential use as a cancer biomarker, and summarize the directions for future research.


Author(s):  
Georgia Colleluori ◽  
Jessica Perugini ◽  
Giorgio Barbatelli ◽  
Saverio Cinti

AbstractThe mammary gland (MG) is an exocrine gland present in female mammals responsible for the production and secretion of milk during the process of lactation. It is mainly composed by epithelial cells and adipocytes. Among the features that make the MG unique there are 1) its highly plastic properties displayed during pregnancy, lactation and involution (all steps belonging to the lactation cycle) and 2) its requirement to grow in close association with adipocytes which are absolutely necessary to ensure MG’s proper development at puberty and remodeling during the lactation cycle. Although MG adipocytes play such a critical role for the gland development, most of the studies have focused on its epithelial component only, leaving the role of the neighboring adipocytes largely unexplored. In this review we aim to describe evidences regarding MG’s adipocytes role and properties in physiologic conditions (gland development and lactation cycle), obesity and breast cancer, emphasizing the existing gaps in the literature which deserve further investigation.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S4-S4
Author(s):  
Belal Chami ◽  
Gulfam Ahmad ◽  
Angie Schroder ◽  
Patrick San Gabriel ◽  
Paul Witting

Abstract Neutrophils are short-lived immune cells that represent the major cell type recruited to the inflamed bowel releasing their azurophilic granules containing enzymes myeloperoxidase (MPO). Fecal and serum MPO levels has previously been shown to correlate to disease severity in IBD patients. MPO, in the presence of H2O2 and free Cl- undergoes a halogenation cycle, yielding the two-electron oxidant, hypochlorous acid (HOCl) - a potent bactericidal agent. However, chronic intestinal exposure to MPO/HOCl due to perpetual inflammation may cause secondary host-tissue injury and cell death. Neutrophil Extracellular Trap (NET)osis is a specialised form of neutrophil death where MPO is entrapped in a DNA scaffold and continues to elicit HOCl activity and may further contribute to host-tissue injury. We investigated the presence of NETs in surgically excised ileum samples from CD and healthy patients using advanced confocal microscopic techniques and found MPO, Neutrophil Elastase (NE) and Citrullinated Histone h3 (CitH3) - critical components of NET formation, individually positively correlate to the severity of histopathological intestinal injury. Furthermore, multiplex Opal™ IHC performed using LMS880 Airyscan-moduled microscopy with z-stacking revealed colocalization of NE, MPO, CitH3 and DAPI indicating the extensive presence of NETs in severely affected CD tissue. Using two pharmacological inhibitors of MPO in a dextran sodium sulphate (DSS) model of murine colitis, we demonstrated the pathological role of MPO in experimental colitis. MPO inhibitors, TEMPOL and AZD3241 delivered via daily i.p significantly rescued the course of colitis by abrogating clinical indices including body weight loss, disease activity index, inhibiting serum peroxidation, and preserving colon length, while significantly mitigating histoarchitectural damage associated with DSS-induced colitis. We also showed that MPO inhibition decreased neutrophil migration to the gut, suggesting MPO may play a role in perpetuating the inflammatory cell by further recruiting cells to the inflamed gut. Collectively, we have shown for the first time that MPO is not only an important clinical marker of disease severity but may also play a critical role in perpetuating host-tissue damage and inflammation.


Author(s):  
Kang Zhou ◽  
Yan Xu ◽  
Qiong Wang ◽  
Lini Dong

Abstract Myocardial injury is still a serious condition damaging the public health. Clinically, myocardial injury often leads to cardiac dysfunction and, in severe cases, death. Reperfusion of the ischemic myocardial tissues can minimize acute myocardial infarction (AMI)-induced damage. MicroRNAs are commonly recognized in diverse diseases and are often involved in the development of myocardial ischemia/reperfusion injury. However, the role of miR-431 remains unclear in myocardial injury. In this study, we investigated the underlying mechanisms of miR-431 in the cell apoptosis and autophagy of human cardiomyocytes in hypoxia/reoxygenation (H/R). H/R treatment reduced cell viability, promoted cell apoptotic rate, and down-regulated the expression of miR-431 in human cardiomyocytes. The down-regulation of miR-431 by its inhibitor reduced cell viability and induced cell apoptosis in the human cardiomyocytes. Moreover, miR-431 down-regulated the expression of autophagy-related 3 (ATG3) via targeting the 3ʹ-untranslated region of ATG3. Up-regulated expression of ATG3 by pcDNA3.1-ATG3 reversed the protective role of the overexpression of miR-431 on cell viability and cell apoptosis in H/R-treated human cardiomyocytes. More importantly, H/R treatments promoted autophagy in the human cardiomyocytes, and this effect was greatly alleviated via miR-431-mimic transfection. Our results suggested that miR-431 overexpression attenuated the H/R-induced myocardial damage at least partly through regulating the expression of ATG3.


2000 ◽  
Vol 80 (4) ◽  
pp. 1669-1699 ◽  
Author(s):  
Giuseppe Montrucchio ◽  
Giuseppe Alloatti ◽  
Giovanni Camussi

Platelet-activating factor (PAF) is a phospholipid mediator that belongs to a family of biologically active, structurally related alkyl phosphoglycerides. PAF acts via a specific receptor that is coupled with a G protein, which activates a phosphatidylinositol-specific phospholipase C. In this review we focus on the aspects that are more relevant for the cell biology of the cardiovascular system. The in vitro studies provided evidence for a role of PAF both as intercellular and intracellular messenger involved in cell-to-cell communication. In the cardiovascular system, PAF may have a role in embryogenesis because it stimulates endothelial cell migration and angiogenesis and may affect cardiac function because it exhibits mechanical and electrophysiological actions on cardiomyocytes. Moreover, PAF may contribute to modulation of blood pressure mainly by affecting the renal vascular circulation. In pathological conditions, PAF has been involved in the hypotension and cardiac dysfunctions occurring in various cardiovascular stress situations such as cardiac anaphylaxis and hemorrhagic, traumatic, and septic shock syndromes. In addition, experimental studies indicate that PAF has a critical role in the development of myocardial ischemia-reperfusion injury. Indeed, PAF cooperates in the recruitment of leukocytes in inflamed tissue by promoting adhesion to the endothelium and extravascular transmigration of leukocytes. The finding that human heart can produce PAF, expresses PAF receptor, and is sensitive to the negative inotropic action of PAF suggests that this mediator may have a role also in human cardiovascular pathophysiology.


Sign in / Sign up

Export Citation Format

Share Document