scholarly journals Effects of Cabozantinib on Human G292 Osteosarcoma Cells

2021 ◽  
Vol 9 (9) ◽  
Author(s):  
Longjie Chen ◽  
Dinh Nguyen ◽  
Ryan Kaminsky ◽  
Jennifer Helfer ◽  
Rosemary Dziak

Cabozantinib (CBZ) N-(4-((6,7-dimethoxyquinolin-4-yl) oxy) phenyl)-N-(4-fluorophenyl) cyclopropane-1,1-dicarboxamide) (XL184), an inhibitor of MET and vascular endothelial growth factor receptor (VEGFR-2), is an agent approved for the treatment of several types of carcinoma such as medullary thyroid and renal. Recent studies are encouraging for the effectiveness of CBZ in the treatment of osteosarcoma. Because of the complex nature of the microenvironment of osteosarcoma cell sites, in order to better understand the direct effects of CBZ on osteosarcoma cells, in vitro studies were conducted with the human osteosarcoma cell line, G292. Experiments were focused on the effects of CBZ on cell metabolic activity, differentiation, and apoptosis as well as the modulation of responses to growth factors such as platelet-derived growth factor (PDGF) and insulin like growth factor (IGF-I). The results indicate that CBZ can increase the activity of caspase 3/7 as an indicator of apoptosis as well as decrease cellular activity, measured by MTT assay and differentiation assessed by alkaline phosphatase activity. The drug partially downregulated the effects of PDGF on MTT activity and had significant inhibitory effects on the G292 cells response to IGF-I and production of VEGF. This study presents original information on responses of G292 human osteosarcoma cells to the chemotherapy agent, CBZ, and provides in vitro data consistent with the potential therapeutic effects of this agent for osteosarcoma.

1999 ◽  
Vol 46 (1) ◽  
pp. 117-123 ◽  
Author(s):  
W Lopaczynski ◽  
C Terry

Insulin-like growth factor I (IGF-I) stimulates multiplication of the human osteosarcoma cell line, MG-63, by acting through IGF-I receptor. We have characterized IGF-I stimulated phosphorylation of IRS-1, activation of Ras cycle and phosphorylation of c-Jun in this cell line. Serum starved MG-63 cells were (1) IGF-I stimulated and lysates were immunoprecipitated with polyclonal IRS-1 antibody or (2) metabolically labeled with [32P]orthophosphoric acid and then cells were treated with IGF-I. Cell lysates were immunoprecipitated with p21Ras antibody (Y13-259) and bound nucleotides were analysed by thin-layer chromatography. We demonstrated tyrosine phosphorylation of IRS-1/2 immunoprecipitated from MG-63 cells stimulated with IGF-I. We also showed an increased level of GTP in p21Ras immunoprecipitates from IGF-I treated cells. Nuclear extracts prepared from 32P-labeled cells before and after addition of IGF-I were immunoprecipitated with c-Jun antibody. After electrophoresis and autoradiography, phosphorylation of the c-Jun band was seen to be IGF-I independent. Phosphoamino acid analysis of the c-Jun band showed that phosphoserine was the major species.


2020 ◽  
Vol 20 ◽  
Author(s):  
Maura Argenziano ◽  
Alessandra Di Paola ◽  
Chiara Tortora ◽  
Daniela Di Pinto ◽  
Elvira Pota ◽  
...  

Background: Osteosarcoma is an aggressive bone tumor. Itrepresents the principal cause of cancer-associated death in children.Considering the recent findings on the role of iron in cancer, iron chelation has been investigated for its antineoplastic properties in many tumors. Deferasirox is the most used iron chelator compound and in previous studies showed an anticancer effectinhematologic and solid malignancies. Eltrombopag is a Thrombopoietin receptor used in thrombocytopenia, that also binds and mobilize iron. It demonstrated an effect in iron overload conditions and also in contrasting cancer cells proliferation. Objective: We analyzed the effects of Deferasirox and Eltrombopag in Human Osteosarcoma cells, in the attempt to identify other therapeutic approaches for this tumor. Methods: We cultured and treated withDeferasirox and Eltrombopag, alone and in combination, two human osteosarcoma cell lines, MG63 and 143B. After 72h exposure, we performed RTqPCR, Western Blotting, Iron Assay and cytofluorimetric assays to evaluate the effect on viability, apoptosis, cell cycle progression and ROS production. Results: The iron chelating properties of the two compounds are confirmed also in Osteosarcoma, but we did not observe any direct effect on tumor progression. Discussion: We tested Deferasirox and Eltrombopag, alone and in combination, in Human Osteosarcoma cells for the first time and demonstrated that their iron chelating activity does not influence biochemical pathways related to cancer progression and maintenance. Conclusion: Although further investigations on possible effects mediated by cells of the tumor microenvironment could be of great interest, in vitro iron chelation in Osteosarcoma does not impair tumor progression.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 52 ◽  
Author(s):  
Lucas Dias ◽  
Ana Batista de Carvalho ◽  
Sara Pinto ◽  
Gilberto Aquino ◽  
Mário Calvete ◽  
...  

In the present study, we developed a green epoxidation approach for the synthesis of the diastereomers of (−)-isopulegol benzyl ether epoxide using molecular oxygen as the oxidant and a hybrid manganese(III)-porphyrin magnetic reusable nanocomposite as the catalyst. High activity, selectivity, and stability were obtained, with up to four recycling cycles without the loss of activity and selectivity for epoxide. The anticancer effect of the newly synthesized isopulegol epoxide diastereomers was evaluated on a human osteosarcoma cell line (MG-63); both diastereomers showed similar in vitro potency. The measured IC50 values were significantly lower than those reported for other monoterpene analogues, rendering these epoxide isomers as promising anti-tumor agents against low prognosis osteosarcoma.


Author(s):  
Zhen Tang ◽  
Xinghui Wei ◽  
Tian Li ◽  
Wei Wang ◽  
Hao Wu ◽  
...  

One contributor to the high mortality of osteosarcoma is its reduced sensitivity to chemotherapy, but the mechanism involved is unclear. Improving the sensitivity of osteosarcoma to chemotherapy is urgently needed to improve patient survival. We found that chemotherapy triggered apoptosis of human osteosarcoma cells in vitro and in vivo; this was accompanied by increased Sestrin2 expression. Importantly, autophagy was also enhanced with increased Sestrin2 expression. Based on this observation, we explored the potential role of Sestrin2 in autophagy of osteosarcoma. We found that Sestrin2 inhibited osteosarcoma cell apoptosis by promoting autophagy via inhibition of endoplasmic reticulum stress, and this process is closely related to the PERK-eIF2α-CHOP pathway. In addition, our study showed that low Sestrin2 expression can effectively reduce autophagy of human osteosarcoma cells after chemotherapy, increase p-mTOR expression, decrease Bcl-2 expression, promote osteosarcoma cell apoptosis, and slow down tumour progression in NU/NU mice. Sestrin2 activates autophagy by inhibiting mTOR via the PERK-eIF2α-CHOP pathway and inhibits apoptosis via Bcl-2. Therefore, our results explain one underlying mechanism of increasing the sensitivity of osteosarcoma to chemotherapy and suggest that Sestrin2 is a promising gene target.


2021 ◽  
Vol 14 (6) ◽  
pp. 532
Author(s):  
Muhammad Nazirul Mubin Aziz ◽  
Nurul Fattin Che Rahim ◽  
Yazmin Hussin ◽  
Swee Keong Yeap ◽  
Mas Jaffri Masarudin ◽  
...  

Osteosarcoma (OS) is a life-threatening malignant bone tumor associated with poor prognosis among children. The survival rate of the patient is still arguably low even with intensive treatment provided, plus with the inherent side effects from the chemotherapy, which gives more unfavorable outcomes. Hence, the search for potent anti-osteosarcoma agent with promising safety profile is still on going. Natural occurring substance like curcumin has gained a lot of attention due to its splendid safety profile as well as it pharmacological advantages such as anti-metastasis and anti-angiogenesis. However, natural curcumin was widely known for its poor cellular uptake, which undermines all potential that it possesses. This prompted the development of synthetically synthesized curcuminoid analog, known as (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2- en-1-one (DK1). In this present study, in vitro scratch assay, transwell migration/invasion assay, HUVEC tube formation assay, and ex vivo rat aortic ring assays were performed in order to investigate the anti-metastatic and anti-angiogenic potential of DK1. For further comprehension of DK1 mechanism on human osteosarcoma cell lines, microarray gene expression analysis, quantitative polymerase chain reaction (qPCR), and proteome profiler were adopted, providing valuable forecast from the expression of important genes and proteins related to metastasis and angiogenesis. Based on the data gathered from the bioassays, DK1 was able to inhibit the metastasis and angiogenesis of human osteosarcoma cell lines by significantly reducing the cell motility, number of migrated and invaded cells as well as the tube formation and micro-vessels sprouting. Additionally, DK1 also has significantly regulated several cancer pathways involved in OS proliferation, metastasis, and angiogenesis such as PI3K/Akt and NF-κB in both U-2 OS and MG-63. Regulation of PI3K/Akt caused up-regulation of genes related to metastasis inhibition, namely, PTEN, FOXO, PLK3, and GADD45A. Meanwhile, NF-κB pathway was regulated by mitigating the expression of NF-κB activator such as IKBKB and IKBKE in MG-63, whilst up-regulating the expression of NF-κB inhibitors such as NFKBIA and NFKBIE in U-2 OS. Finally, DK1 also has successfully hindered the metastatic and angiogenic capability of OS cell lines by down-regulating the expression of pro-metastatic genes and proteins like MMP3, COL11A1, FGF1, Endoglin, uPA, and IGFBP2 in U-2 OS. Whilst for MG-63, the significantly down-regulated oncogenes were Serpin E1, AKT2, VEGF, uPA, PD-ECGF, and Endoglin. These results suggest that curcumin analog DK1 may serve as a potential new anti-osteosarcoma agent due to its anti-metastatic and anti-angiogenic attributes.


Sign in / Sign up

Export Citation Format

Share Document