scholarly journals Re-Evaluation of the First Metamorphic P-T Path Using QuiG Barometry and Equilibrium Thermodynamics

Author(s):  
Sam Couch

Quartz in garnet (“QuiG”) barometry is a relatively new technique that uses physical properties of minerals to estimate the pressure of garnet nucleation and growth history independent of chemical equilibrium. QuiG barometry was used to determine pressures of garnet growth and compared to thermodynamically calculated P-T conditions for two samples (FH-1M and Z3H) from the Lower Shieferhülle (Formation), Tauern Window, Austria. FH-1M was the first sample for which a P-T path was calculated through inversion of chemical zoning in garnet (Selverstone et al., 1984). Mineral Assemblage Diagrams (MADs) and geothermobarometric techniques were used to determine P-T conditions for garnet nucleation and peak metamorphism. No MAD reproduced either the results of Selvserstone et al. (1984) or petrologic observations such as mineral assemblages and likely P-T conditions as determined using independent thermobarometers. Thermobarometrically calculated rim conditions were consistent between our study and previous work in the Lower Schieferhülle. However, without appropriate inclusion assemblages and compositions, the accuracy of calculated core P-T conditions could not be independently assessed using thermobarometry for either rock. QuiG isomekes from both samples are broadly consistent with growth of garnet during exhumation with heating as originally proposed by Selverstone et al. (1984). However, the QuiG isomekes for Z3H suggest that 90% or more of the Z3H garnet grew over small changes in pressure and temperature or along a QuiG isomeke (heating with a slight increase in pressure). These results support the accuracy of prior P-T paths and their tectonic interpretations. However, inconsistencies between QuiG barometry vs. thermodynamic calculations remain unresolved.

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Thomas M. Etzel ◽  
Elizabeth J. Catlos ◽  
Ibrahim Cemen ◽  
Cenk Ozerdem ◽  
Tolga Oyman ◽  
...  

Abstract The Menderes Massif (Turkey) is a metamorphic core complex that records Alpine crustal shortening and extension. Here, nine garnet-bearing schist samples in the Central Menderes Massif (CMM) from below the Alaşehir detachment (AD) were studied to reconstruct their growth history. P-T estimates made using a chemical zoning approach, and petrological observations, indicate garnet grew between ~6 kbar and 550°C and 7.5-9 kbar and 625-650°C. Two P-T path shapes from two samples emerged (isobaric and burial), suggesting that either separate garnet-growth events occurred, or different garnet generations from the same metamorphic event were sampled. Despite observable diffusional modification in most garnets, thermobarometric estimates for crystal-rim growth yield P-T estimates similar to those reported elsewhere in the region. Ion microprobe monazite ages, paired with textural observations, from three of the samples time early retrograde metamorphism (~36-28 Ma). To better understand Neogene extension/exhumation, K-feldspar 40Ar/39Ar ages were obtained from two synextensional granites (Salihli and Turgutlu) exposed along the AD and two from the northern Simav detachment (Koyunoba and Eğrigöz). This data suggests the Simav detachment footwall rapidly exhumed at ~20 Ma, whereas the AD experienced two periods of exhumation/cooling (~14 Ma and~5 Ma). AD ages support a pulsed exhumation model for the massif.


2006 ◽  
Vol 70 (6) ◽  
pp. 655-667 ◽  
Author(s):  
G. Săbău ◽  
E. Negulescu ◽  
H.-J. Massonne

AbstractWe have investigated the chemical zoning of garnet in three texturally different eclogite types from the Leaota Massif, Romania, to test the various zonation patterns of Ca, Fe, Mg and Mn as indices of time-lines in porphyroblastic garnets. Mn zonation was found to mark various growth stages very well. It indicates in each of our three case studies a complex growth history dominated by multiple nucleation and coalescence, but also interrupted by partial resorption, as shown by morphological characteristics. Chemical variations of the main elements in garnet during prograde high-pressure metamorphism define time-lines other than those of Mn which decrease, highlighting the stages of porphyroblastic growth. In particular, the Ca/Mn, Mg/Mn and Mg/Fe ratios are useful in late growth stages, when low Mn contents and radial gradients do not allow a satisfactory resolution of Mn time-lines. These ratio-based time-lines further substantiate the potential of Mn time-lines in revealing non-concentric porphyroblastic growth. This is important in order to correctly relate garnet growth stages to stable mineral assemblages, a prerequisite for a reliable derivation of the metamorphic history of the host rock.


2021 ◽  
Author(s):  
◽  
Dave B Murphy

<p>Metamorphic rocks have the potential to record in their mineral assemblages, mineral compositional zoning, and textures, information about geological changes and processes that occur during tectonic events. Interpretations of metamorphic pressure-temperature (P-T) records have traditionally relied on results of geothermobarometry studies, but that approach is not suitable in every case. Metamorphosed greywacke, which makes up ~95% of the New Zealand Southern Alps, has long proven problematic for traditional geothermobarometry because it develops intractable mineral compositions and/or assemblages, especially at relatively low temperature (greenschist facies) conditions. An alternative forward modelling approach using the computer program THERMOCALC was recently used to extract the first detailed P-T history (P-T path) from such previously intractably difficult "greyschist" rocks from a single site in the New Zealand Southern Alps. The present study is the first attempt to apply those new methods to rocks from another study area, and is the first detailed geological study of the Newton Range in the New Zealand Southern Alps. The Newton Range is a ~15 km-long, east-west trending range located ~30 km southeast of the town of Hokitika, ~110 km northeast of the Franz Josef-Fox Glacier region, and immediately to the east of the Alpine Fault in the Southern Alps, South Island, New Zealand. The rocks in the Newton Range are mainly derived from Torlesse Terrane accretionary prism greywacke and argillite (Alpine Schist, greyschist), together with a large pods of ultramafic rock (part of the Pounamu Ultramafic Belt (PUB)) and minor associated metabasic layers (greenschist), all metamorphosed to greenschist facies conditions. The dominant mineral assemblage in the greyschist (Qtz + Ms+ Bt ± Chl ± Ep ± Pl ± Ilm ± Ttn ± Grt ± Zrn ± Tur ± Ap ± Cal), much like that found elsewhere in the Southern Alps. As elsewhere in the Southern Alps, the dominant high-grade metamorphic mineral assemblages in the Alpine Schist in the Newton Range are inherited. The mineral assemblages, compositions, and some textures thus record evidence of processes that took place during tectonic events, presumably mainly in Cretaceous time, prior to the formation of the modern Southern Alps, which are forming today by the ongoing oblique continent-continent collision of the Pacific Plate against the Australian Plate at the Alpine Fault. Compositional zoning in garnet from the greyschist is an important record of the metamorphic P-T path traversed by the host rock as the garnet grew. Occasionally, garnet from the study area contains an inmost core (stage 0) of unusual (anomalously high- or low-MnO) composition. The cores with extremely low MnO are possibly detrital in origin, and those with extremely high MnO may perhaps have grown in the early tectonic episode that formed the Otago Schist. Typically, garnet shows the following core- to rim zoning sequence. Stages 1 & 2 show a progressive decrease in MnO and increase in FeO from core to rim, with higher MnO cores present in rocks with higher whole-rock MnO compositions. Stage 3 is characterised by a gradual decrease in CaO and signifies the growth of Ca-bearing oligoclase late in the garnet growth history. Stage 4 is a discontinuous overgrowth characterised by an abrupt increase in CaO. Such overgrowths have in the past been attributed to garnet growth accompanying the development of the Alpine Fault mylonite zone in the late Cenozoic. In the Newton Range they were only observed on garnet adjacent to the main outcrop of the PUB at ~4.5km from the Alpine Fault, far from the mylonite zone, so local element availability during decompression (and possibly fluid flow and/or metasomatism) may have played a part in the growth of these rims. A P-T path for Alpine Schist from the Newton Range has been estimated using detailed garnet composition data measured along core-to-rim transects across individual garnets, together with predicted garnet compositions and P-T pseudosection results calculated using THERMOCALC. The P-T path starts at ~3.5kbar/400°C, where both garnet and albite coexist, and increases in pressure and temperature to ~6.5bar/500°C where garnet coexists with both albite and oligoclase. The estimated peak metamorphic conditions probably correspond to peak metamorphic pressures, unlike in the Franz Josef-Fox Glacier region where peak conditions (~9.2kbar and 620°C) probably coincided with peak metamorphic temperatures.</p>


2021 ◽  
Author(s):  
Michel Ballèvre ◽  
Marc Poujol ◽  
Selim Rousseau ◽  
Paola Manzotti

&lt;p&gt;Intracrystalline diffusion is an efficient mechanism in high-grade rocks. Therefore, growth zoning in garnet is erased and the evidence for prograde path is lost. However, information recorded by the textures may store significant clues for deciphering part of the P-T path. An example is provided here from the migmatitic paragneisses from the Mont Mary nappe (Western Alps).&lt;/p&gt;&lt;p&gt;The latter is made of a pre-Alpine basement consisting of an upper and a lower unit. The upper unit is made of paragneisses, marbles and amphibolites similar to those of the Valpelline Unit and of the Ivrea Zone. The lower unit displays granitic orthogneisses, paraschists (with muscovite, biotite, garnet with local occurrences of staurolite, kyanite and andalusite) (Dal Piaz et al. 2015). In this unit, we discovered a hectometre-sized volume with no Alpine overprint, preserving migmatitic paragneisses, the topic of this study.&lt;/p&gt;&lt;p&gt;The paragneisses display quartzo-feldspathic leucocratic layers interpreted as crystallized melts. The leucosomes are separated by biotite- and sillimanite-rich layers, with conspicuous garnet porphyroblasts. In addition, fresh cordierite crystals are found in these layers. Sillimanite included in garnet rims has the same orientation than the one in the matrix. There, the foliation is defined by the shape fabric of biotite and sillimanite, wrapping both garnet and cordierite crystals.&lt;/p&gt;&lt;p&gt;Such textures may be used to propose a P-T path. A sequence of prograde reactions, including dehydration-melting of muscovite, then biotite, result in the production of a large amount of sillimanite. Garnet growth was continuing during incongruent melting. However, intracrystalline diffusion has erased the prograde chemical zoning, as well as the distribution and shape of mineral inclusions. The late replacement of garnet and cordierite by biotite and sillimanite indicates near-isobaric cooling, also recorded by chemical zoning along garnet rims.&lt;/p&gt;&lt;p&gt;Chemical data on coexisting minerals will be used to provide quantitative constraints on the P-T path. In addition, preliminary geochronological data suggest that detrital zircons grains were significantly reset during the HT metamorphism, which could have taken place c. 270 Ma ago. To conclude, the studied paragneisses offer another example of Permian near-isobaric cooling in the middle crust of the Adriatic plate.&lt;/p&gt;&lt;p&gt;Dal Piaz G.V., Bistacchi A., Gianotti F., Monopoli B., Passeri L., Schiavo A. &amp; collaboratori (2015) &amp;#8211; Note illustrative della carta Geologica d&amp;#8217;Italia alla scala 1:50.000. Foglio 070, Monte Cervino. ISPRA, Servizio Geologico d&amp;#8217;Italia, 070, 1-431.&lt;/p&gt;


2021 ◽  
Author(s):  
◽  
Dave B Murphy

<p>Metamorphic rocks have the potential to record in their mineral assemblages, mineral compositional zoning, and textures, information about geological changes and processes that occur during tectonic events. Interpretations of metamorphic pressure-temperature (P-T) records have traditionally relied on results of geothermobarometry studies, but that approach is not suitable in every case. Metamorphosed greywacke, which makes up ~95% of the New Zealand Southern Alps, has long proven problematic for traditional geothermobarometry because it develops intractable mineral compositions and/or assemblages, especially at relatively low temperature (greenschist facies) conditions. An alternative forward modelling approach using the computer program THERMOCALC was recently used to extract the first detailed P-T history (P-T path) from such previously intractably difficult "greyschist" rocks from a single site in the New Zealand Southern Alps. The present study is the first attempt to apply those new methods to rocks from another study area, and is the first detailed geological study of the Newton Range in the New Zealand Southern Alps. The Newton Range is a ~15 km-long, east-west trending range located ~30 km southeast of the town of Hokitika, ~110 km northeast of the Franz Josef-Fox Glacier region, and immediately to the east of the Alpine Fault in the Southern Alps, South Island, New Zealand. The rocks in the Newton Range are mainly derived from Torlesse Terrane accretionary prism greywacke and argillite (Alpine Schist, greyschist), together with a large pods of ultramafic rock (part of the Pounamu Ultramafic Belt (PUB)) and minor associated metabasic layers (greenschist), all metamorphosed to greenschist facies conditions. The dominant mineral assemblage in the greyschist (Qtz + Ms+ Bt ± Chl ± Ep ± Pl ± Ilm ± Ttn ± Grt ± Zrn ± Tur ± Ap ± Cal), much like that found elsewhere in the Southern Alps. As elsewhere in the Southern Alps, the dominant high-grade metamorphic mineral assemblages in the Alpine Schist in the Newton Range are inherited. The mineral assemblages, compositions, and some textures thus record evidence of processes that took place during tectonic events, presumably mainly in Cretaceous time, prior to the formation of the modern Southern Alps, which are forming today by the ongoing oblique continent-continent collision of the Pacific Plate against the Australian Plate at the Alpine Fault. Compositional zoning in garnet from the greyschist is an important record of the metamorphic P-T path traversed by the host rock as the garnet grew. Occasionally, garnet from the study area contains an inmost core (stage 0) of unusual (anomalously high- or low-MnO) composition. The cores with extremely low MnO are possibly detrital in origin, and those with extremely high MnO may perhaps have grown in the early tectonic episode that formed the Otago Schist. Typically, garnet shows the following core- to rim zoning sequence. Stages 1 & 2 show a progressive decrease in MnO and increase in FeO from core to rim, with higher MnO cores present in rocks with higher whole-rock MnO compositions. Stage 3 is characterised by a gradual decrease in CaO and signifies the growth of Ca-bearing oligoclase late in the garnet growth history. Stage 4 is a discontinuous overgrowth characterised by an abrupt increase in CaO. Such overgrowths have in the past been attributed to garnet growth accompanying the development of the Alpine Fault mylonite zone in the late Cenozoic. In the Newton Range they were only observed on garnet adjacent to the main outcrop of the PUB at ~4.5km from the Alpine Fault, far from the mylonite zone, so local element availability during decompression (and possibly fluid flow and/or metasomatism) may have played a part in the growth of these rims. A P-T path for Alpine Schist from the Newton Range has been estimated using detailed garnet composition data measured along core-to-rim transects across individual garnets, together with predicted garnet compositions and P-T pseudosection results calculated using THERMOCALC. The P-T path starts at ~3.5kbar/400°C, where both garnet and albite coexist, and increases in pressure and temperature to ~6.5bar/500°C where garnet coexists with both albite and oligoclase. The estimated peak metamorphic conditions probably correspond to peak metamorphic pressures, unlike in the Franz Josef-Fox Glacier region where peak conditions (~9.2kbar and 620°C) probably coincided with peak metamorphic temperatures.</p>


2021 ◽  
Author(s):  
Elena-Luisa Iatan

&lt;p&gt;Voia deposit belongs to the S&amp;#259;c&amp;#259;r&amp;#226;mb-Cetra&amp;#537;-Cordurea Miocene volcano-tectonic alignment of the South Apuseni Mountains, Romania. This large volcanic complex represents a Sarmatian-Pannonian magmatic-hydrothemal mega-system of around 5 km&lt;sup&gt;2&lt;/sup&gt; with an estimated 3&amp;#8211;4 Ma time-space evolution, consisting of seven andesitic volcanic structures grouped in a circle, three subvolcanic andesite-quartz porphyry microdiorite and associated porphyry Cu-Au(Mo), pyrite Ca-Mg skarns and epithermal Au-Ag-Pb-Zn-Cu mineralizations.&lt;/p&gt;&lt;p&gt;The mineral assemblages of alteration and mineralization processes belong to several mineralized zones on a vertical scale, according to sampling evidence and laboratory studies. HS products are found in the upper part of the structure (300-500 m), with dominant advanced and intermediate argillic alterations and sulfide-sulfate gold-poor veins (pyrite, marcasite, base metal sulfides, Fe-Ti oxides, vuggy quartz, alunite, gypsum, anhydrite). Within the 500-1200 m depth, the HS mineral assemblages gradually decrease in favor of IS and LS products. It is characterized by the coexistence of gold-rich LS assemblage (native gold, base metal sulfide, adularia, sericite-illite, chlorite, carbonates &amp;#177; anhydrite veins), with the IS assemblage (iron oxides, chalcopyrite, pyrite, quartz, anhydrite). These assemblages overprint the HS mineral associations, resulting in a transition zone characterized by gold - pyrite - chalcopyrite - iron oxides - quartz - anhydrite mineral assemblage characteristic for HS and native gold - pyrite - base metal sulfides - carbonates - quartz mineral assemblage corresponding to IS+LS type.&lt;/p&gt;&lt;p&gt;Gold is present in all of the identified mineralization forms: porphyry-epithermal Cu-Au, epi-mesothermal carbonate veins with gold - base metal sulfides, quartz veins with pyrite - chalcopyrite - magnetite &amp;#177; hematite &amp;#177; anhydrite, anhydrite veins with base metal sulfides and sulfosalts, anhydrite veins with pyrite - anhydrite &amp;#177; quartz, vuggy quartz (silica residue) with gold-poor pyrite veins and impregnations in porphyry systems.&lt;/p&gt;&lt;p&gt;Drilling core samples revealed that in Voia deposit, gold is concentrated in chalcopyrite (drills no. 7, 19, 37) along with pyrite - magnetite - hematite - quartz assemblage from the late potassic stage. The major amount of gold associated with chalcopyrite tends to be mainly submicroscopic. Pyrite from anhydrite veins of the early potassic stage &amp;#177; phyllic alteration is relatively poor in gold (drills no. 1-6, 8-14). However, the highest gold contents are present in pentagonal dodecahedron pyrites (drills no. 33, 38, 39) of pyrite-chalcopyrite-magnetite &amp;#177; hematite-quartz assemblage from late potassic stage &amp;#177; phyllic alteration. Pyrite associated with magnetite from anhydrite veins tends to be poor in gold (drills no. 8, 11, 15, 28, 29). A carbonate vein containing gold-bearing base metal sulfides that was intercepted at 960,00-960,30m depth by drill no. 17 is one of the richest in gold.&lt;/p&gt;&lt;p&gt;Native gold occurs as fine inclusions in ore minerals (5-20 &amp;#956;m). Large irregular grains of native gold (&gt;50 &amp;#956;m) appear at mineral boundaries and along the fissures. The gold color is bright yellow and has a measured Au:Ag ratio of 5:1, suggesting that native gold has been formed at a relatively high temperature.&lt;/p&gt;&lt;p&gt;Acknowledgments: This work was supported by two Romanian Ministry of Research and Innovation grants: PN-III-P4-ID-PCCF-2016-4-0014 and PN-III-P1-1.2-PCCDI-2017-0346/29.&lt;/p&gt;


2020 ◽  
Vol 84 (1) ◽  
pp. 125-130
Author(s):  
Anna Vymazalová ◽  
František Laufek ◽  
Alexandr V. Kristavchuk ◽  
Dmitriy A. Chareev

AbstractPhase equilibria in the system Pd–Ag–S were studied using the silica-glass tube method at 400°C and 550°C. In the system we synthesised three ternary phases: coldwellite (Pd3Ag2S), kravtsovite (PdAg2S) and a new phase Pd13Ag3S4. At 400°С, coldwellite forms a stable association with vysotskite (PdS) and vasilite (Pd16S7); vysotskite and kravtsovite; phase Pd4S and a Ag–Pd alloy; it also coexists with a new phase Pd13Ag3S4. Kravtsovite is stable up to 507°C; the presence of kravtsovite in the mineral assemblage reflects its formation below this temperature. The occurrence of coldwellite, vysotskite and Ag2S together in equilibrium reflects the formation of this mineral assemblage above this temperature (507°C). Coldwellite is stable up at 940°С. Mineral assemblages defined in this study can be expected in Cu–Ni–PGE mineral deposits, associated with mafic and ultramafic igneous rocks, in particular in mineralisations with known silver–palladium sulfides.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 478
Author(s):  
Andrey K. Litvinenko ◽  
Elena S. Sorokina ◽  
Tobias Häger ◽  
Yuri A. Kostitsyn ◽  
Roman E. Botcharnikov ◽  
...  

The Snezhnoe ruby deposit is located in the Muzkol–Rangkul anticlinorium within the Cimmerian zone of the Central Pamir. On the local scale, the deposit occurs on discrete relict bedding planes of calcitic marbles belonging to the Sarydzhilgin suite. Four ruby-bearing mineral assemblages are present within the main parts of the deposit: (1) scapolite + phlogopite + muscovite + margarite; (2) plagioclase + muscovite + margarite; (3) muscovite + phlogopite + margarite; (4) calcite. The ruby + calcite association is the most economically important, whereas the association of plagioclase + scapolite + phlogopite + muscovite is typical for the ruby-free parts of the deposit. Mica group minerals with a distinctive green color due to enhanced Cr and V concentrations are the main prospecting indicators for the ruby mineralization. The oxygen isotopic composition of the rubies is +15.3‰, a common value for crustal metamorphic and sedimentary rocks. The ratios of indicative trace elements in the rubies are Ga/Mg < 8.2, Fe/Mg < 51.2, Cr/Ga > 6.9 and Fe/Ti < 31.6. These values are characteristic for metamorphic corundum. The bulk ruby-bearing rocks have an initial 87Sr/86Sr ratio of ~0.70791 and εNd of ~−9.6, also pointing to the crustal origin of the deposit in agreement with the geological data. Ancient Al-enriched sediments are suggested to be a possible protolith for the ruby-bearing rocks. The temperature of the metamorphic processes was estimated at 760 ± 30 °C using Zr-in-rutile geothermometry. Raman mapping of rutile inclusions trapped within the ruby crystal indicates that the minimum pressure of mineralization was about one kilobar. The age determined by the Rb–Sr thermal ionization mass spectrometry of phlogopite, plagioclase and bulk rock is 23 ± 1.6 Ma, corresponding to the timing of relaxation after peak metamorphism during the Alpine–Himalayan Orogeny.


2020 ◽  
Vol 175 (11) ◽  
Author(s):  
Vho Alice ◽  
Rubatto Daniela ◽  
Lanari Pierre ◽  
Giuntoli Francesco ◽  
Regis Daniele ◽  
...  

Abstract Subduction zones represent one of the most critical settings for fluid recycling as a consequence of dehydration of the subducting lithosphere. A better understanding of fluid flows within and out of the subducting slab is fundamental to unravel the role of fluids during burial. In this study, major and trace element geochemistry combined with oxygen isotopes were used to investigate metasediments and eclogites from the Sesia Zone in order to reconstruct the effect of internal and external fluid pulses in a subducted continental margin. Garnet shows a variety of textures requiring dissolution–precipitation processes in presence of fluids. In polycyclic metasediments, garnet preserves a partly resorbed core, related to pre-Alpine high-temperature/low-pressure metamorphism, and one or multiple rim generations, associated with Alpine subduction metamorphism. In eclogites, garnet chemical zoning indicates monocyclic growth with no shift in oxygen isotopes from core to rim. In metasediments, pre-Alpine garnet relics show δ18O values up to 5.3 ‰ higher than the Alpine rims, while no significant variation is observed among different Alpine garnet generations within each sample. This suggests that an extensive re-equilibration with an externally-derived fluid of distinct lower δ18O occurred before, or in correspondence to, the first Alpine garnet growth, while subsequent influxes of fluid had δ18O close to equilibrium. The observed shift in garnet δ18O is attributed to a possible combination of (1) interaction with sea-water derived fluids during pre-Alpine crustal extension and (2) fluids from dehydration reactions occurring during subduction of previously hydrated rocks, such as the serpentinised lithospheric mantle or hydrated portions of the basement.


Geology ◽  
2020 ◽  
Vol 48 (10) ◽  
pp. 947-951
Author(s):  
Joseph P. Gonzalez ◽  
Suzanne L. Baldwin ◽  
Jay B. Thomas ◽  
William O. Nachlas ◽  
Paul G. Fitzgerald

Abstract The Appalachian orogen has long been enigmatic because, compared to other parts of the Paleozoic orogens that formed following the subduction of the Iapetus Ocean, direct evidence for ultrahigh-pressure (UHP) metamorphism has never been found. We report the first discovery of coesite in the Appalachian orogen in a metapelite from the mid-Ordovician (Taconic orogeny) Tillotson Peak Complex in Vermont (USA). Relict coesite occurs within a bimineralic SiO2 inclusion in garnet. In situ elastic barometry and trace-element thermometry allow reconstruction of the garnet growth history during prograde metamorphism. The data are interpreted to indicate garnet nucleation and crystallization during blueschist- to eclogite-facies subduction zone metamorphism, followed by garnet rim growth at UHP conditions of &gt; 28 kbar and &gt; 530 ° C. Results provide the first direct evidence that rocks of the Appalachian orogen underwent UHP metamorphism to depths of &gt; 75 km and warrant future studies that constrain the extent of UHP metamorphism.


Sign in / Sign up

Export Citation Format

Share Document