EQUILIBRIUM VACANCY CONCENTRATION AND THERMODYNAMIC QUANTITIES OF FCC DEFECTIVE ALLOYS AuCuSi AND PtCuSi UNDER PRESSURE AND TEMPERATURE

2021 ◽  
Vol 66 (3) ◽  
pp. 38-51
Author(s):  
Viet Le Hong ◽  
Hoc Nguyen Quang

We present the analytic expressions of the cohesive energy, the alloy parameters, the equation of state, the mean nearest neighbor distance, the Helmholtz free energy, equilibrium vacancy concentration, and thermodynamic quantities such as the isothermal compressibility, the thermal expansion coefficient, the heat capacities at constant volume and constant pressure for facecentered cubic (FCC) defective ternary substitutional and interstitial alloy ABC derived by the statistical moment method (SMM). The obtained thermodynamic quantities depend on temperature, pressure, the concentration of substitutional atoms, the concentration of interstitial atoms, and equilibrium vacancy concentration. Thermodynamic quantities of FCC defective metal A, FCC defective substitutional alloy AB, and FCC defective interstitial alloy AC are specific cases for thermodynamic quantities of FCC defective ternary substitutional and interstitial alloy ABC. The theoretical results are calculated numerically to alloys AuCuSi and PtCuSi. Our calculated results of thermal expansion coefficient and heat capacities at constant pressure for main metals Au, Pt are in good agreement with experimental data. Our other calculated results for thermodynamic quantities of alloys AuCuSi and PtCuSi at different temperatures, pressure, the concentration of substitutional atoms, and concentrations of interstitial atoms orient and predict new experimental data in the future.

2013 ◽  
Vol 27 (25) ◽  
pp. 1350180 ◽  
Author(s):  
RAGHUVESH KUMAR ◽  
GEETA SHARMA ◽  
MUNISH KUMAR

A simple theoretical model is developed to study the effect of size and temperature on the coefficient of thermal expansion and lattice parameter of nanomaterials. We have studied the size dependence of thermal expansion coefficient of Pb , Ag and Zn in different shape viz. spherical, nanowire and nanofilm. A good agreement between theory and available experimental data confirmed the model predictions. We have used these results to study the temperature dependence of lattice parameter for different size and also included the results of bulk materials. The temperature dependence of lattice parameter of Zn nanowire and Ag nanowire are found to present a good agreement with the experimental data. We have also computed the temperature and size dependence of lattice parameter of Se and Pb for different shape viz. spherical, nanowire and nanofilm. The results are discussed in the light of recent research on nanomaterials.


Author(s):  
Makhach N. Magomedov

Based on the pairwise interatomic potential of Mi-Lennard-Jones and the Einstein's model of crystal the state equation P(V/V0, T) and the baric dependencies of the lattice properties for diamond were obtained. The calculations were performed along two isotherms: T = 300 and 3000 K and until to P = 10000 kbar (i.e. until to the relative volume V/V0 = 0.5). The baric dependencies for the following properties were obtained: isothermal elastic modulus, isochoric and isobaric heat capacities and thermal expansion coefficient. Good agreement with experimental data was obtained.


1989 ◽  
Vol 67 (7) ◽  
pp. 664-668 ◽  
Author(s):  
T. H. Kwon

Thermodynamic functions of crystalline KCl have been evaluated using a localized model characterized by a pseudopotential and direct Brillouin zone sums. Numerical results are compared with available experimental data for adiabatic compressibility, the linear thermal expansion coefficient, specific heat at constant volume, and specific heat at constant pressure. Calculated results show excellent agreement with experimentally observed data.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Chuen-Lin Tien ◽  
Tsai-Wei Lin

This paper proposes a measuring apparatus and method for simultaneous determination of the thermal expansion coefficient and biaxial Young’s modulus of indium tin oxide (ITO) thin films. ITO thin films simultaneously coated on N-BK7 and S-TIM35 glass substrates were prepared by direct current (DC) magnetron sputtering deposition. The thermo-mechanical parameters of ITO thin films were investigated experimentally. Thermal stress in sputtered ITO films was evaluated by an improved Twyman–Green interferometer associated with wavelet transform at different temperatures. When the heating temperature increased from 30 °C to 100 °C, the tensile thermal stress of ITO thin films increased. The increase in substrate temperature led to the decrease of total residual stress deposited on two glass substrates. A linear relationship between the thermal stress and substrate heating temperature was found. The thermal expansion coefficient and biaxial Young’s modulus of the films were measured by the double substrate method. The results show that the out of plane thermal expansion coefficient and biaxial Young’s modulus of the ITO film were 5.81 × 10−6 °C−1 and 475 GPa.


2020 ◽  
Vol 59 (1) ◽  
pp. 523-537
Author(s):  
Chaturaphat Tharasana ◽  
Aniruj Wongaunjai ◽  
Puwitoo Sornsanee ◽  
Vichasharn Jitprarop ◽  
Nuchnapa Tangboriboon

AbstractIn general, the main compositions of porcelain and bone china composed of 54-65%wt silica (SiO2), 23-34% wt alumina (Al2O3) and 0.2-0.7%wt calcium oxide (CaO) suitable for preparation high quality ceramic products such as soft-hard porcelain products for teeth and bones, bioceramics, IC substrate and magneto-optoelectroceramics. The quality of ceramic hand mold is depended on raw material and its properties (pH, ionic strength, solid-liquid surface tension, particle size distribution, specific surface area, porosity, density, microstructure, weight ratio between solid and water, drying time, and firing temperatures). The suitable firing conditions for porcelain and bone china hand-mold preparation were firing at 1270°C for 10 h which resulted in superior working molds for making latex films from natural and synthetic rubber. The obtained fired porcelain hand molds at 1270°C for 10 h provided good chemical durability (10%NaOH, 5%HCl and 10%wtNaCl), low thermal expansion coefficient (5.8570 × 10−6 (°C−1)), good compressive (179.40 MPa) and good flexural strength (86 MPa). While thermal expansion coefficient, compressive and flexural strength of obtained fired bone china hand molds are equal to 6.9230 × 10−6 (°C−1), 128.40 and 73.70 MPa, respectively, good acid-base-salt resistance, a smooth mold surface, and easy hand mold fabrication. Both obtained porcelain and bone china hand molds are a low production cost, making them suitable for natural and synthetic rubber latex glove formation.


1981 ◽  
Vol 24 (4) ◽  
pp. 338-342
Author(s):  
V. A. Klimenko ◽  
S. I. Masharov ◽  
A. F. Rybalko ◽  
N. M. Rybalko ◽  
N. I. Timofeev

2020 ◽  
Vol 45 (46) ◽  
pp. 24883-24894 ◽  
Author(s):  
Ba Nghiep Nguyen ◽  
Daniel R. Merkel ◽  
Kenneth I. Johnson ◽  
David W. Gotthold ◽  
Kevin L. Simmons ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document