AN EVALUATION OF METEOROLOGICAL DROUGHT IN DAK LAK PROVINCE

2021 ◽  
Vol 66 (3) ◽  
pp. 195-206
Author(s):  
Thuy Hoang Luu Thu ◽  
Mui Tran Thi ◽  
Vu Vuong Van ◽  
Ly Pham Thi ◽  
Cuc Pham Thi

Assessment of the degree of meteorological drought in Dak Lak province is carried out using the SPI index and the water balance index K in the period 1985 - 2019. The results show that: According to the SPI index, drought tends to occur more at the time of transition from the dry season to the rainy season, during the rainy season, and from the time of transition from the rainy season to the dry season. The K-index in the period 1985 - 2019 showed there was a dry period at the beginning of the year from January to April. The anomalous drought factor plays a very important role because its large influence can cause damages, and allows assessing the variability of rainfall and the impact of climate change on the region. The study and evaluation of meteorological drought have practical significance, supporting managers in making policies on water resource management, ensuring sustainable economic and social development in the context of global climate change.

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2130 ◽  
Author(s):  
Zhu ◽  
Zhang ◽  
Wu ◽  
Qi ◽  
Fu ◽  
...  

This paper assesses the uncertainties in the projected future runoff resulting from climate change and downscaling methods in the Biliu River basin (Liaoning province, Northeast China). One widely used hydrological model SWAT, 11 Global Climate Models (GCMs), two statistical downscaling methods, four dynamical downscaling datasets, and two Representative Concentration Pathways (RCP4.5 and RCP8.5) are applied to construct 22 scenarios to project runoff. Hydrology variables in historical and future periods are compared to investigate their variations, and the uncertainties associated with climate change and downscaling methods are also analyzed. The results show that future temperatures will increase under all scenarios and will increase more under RCP8.5 than RCP4.5, while future precipitation will increase under 16 scenarios. Future runoff tends to decrease under 13 out of the 22 scenarios. We also found that the mean runoff changes ranging from −38.38% to 33.98%. Future monthly runoff increases in May, June, September, and October and decreases in all the other months. Different downscaling methods have little impact on the lower envelope of runoff, and they mainly impact the upper envelope of the runoff. The impact of climate change can be regarded as the main source of the runoff uncertainty during the flood period (from May to September), while the impact of downscaling methods can be regarded as the main source during the non-flood season (from October to April). This study separated the uncertainty impact of different factors, and the results could provide very important information for water resource management.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Richard Kobina Dadzie Ephraim ◽  
Christopher Amey Asamoah ◽  
Albert Abaka-Yawson ◽  
Precious Kwablah Kwadzokpui ◽  
Samuel Adusei

Abstract Background Climate change is a significant threat to the health of the Ghanaian people. Evidence abounds in Ghana that temperatures in all the ecological zones are rising, whereas rainfall levels have been generally reducing and patterns are increasingly becoming erratic. The study estimated the impact of climate variation between seasons on biochemical markers of kidney disease. Methods This study conveniently recruited 50 apparently healthy peasant farmers and hawkers at Wa in the Upper West Region of Ghana. A pre-study screening for hepatitis A and C, Diabetes mellitus, hypertension was done. Serum creatinine and urea levels were analyzed to rule out kidney preexisting kidney disease. Baseline data was collected by estimating urea, creatinine, sodium, potassium, eGFR (estimated glomerular filtration rate) as well as for hemoglobin (Hb) and hematocrit (Hct) concentrations. Anthropometric data such as height, weight and blood pressure were measured by trained personnel. The study participants were closely followed and alerted deep in the dry season for the second sampling (urea, creatinine, hemoglobin, hematocrit, blood pressure, anthropometry). Results This study recruited more males (58.82%) than females (41.15%), majority (52.92%) of which were aged 25–29 years with the youngest being 22 years and the eldest being 35 years. The study found body mass index (p < 0.001), systolic blood pressure (p = 0.019), creatinine (p < 0.001), urea (p = 0.013) and eGFR (p < 0.001) to be significantly influenced by climate change. Stage 1 hypertension was predominant among the study participants during the dry season, 8 (15.69%) than was observed during the rainy season, 4 (7.84%) nonetheless the number of participants with normal BMI rose from 49.02% in the rainy season to 62.75% during the dry reason. Additionally, the study observed that the impact of climate change on systolic blood pressure and urea varied based on age and sex. Conclusion This study revealed that climatic changes cause variations in various biochemical parameters used to assess kidney function. Public health education on climatic changes and its implication including precautionary measures should be done among inhabitants of Wa and its environs to reduce its effect. Additionally, appropriate dietary patterns should also be advised to avoid the development of non-communicable diseases such as hypertension and obesity that are known principal causes of Chronic Kidney Disease (CKD).


2021 ◽  
Author(s):  
Mahsa Pakdin ◽  
Morteza Akbari ◽  
Mohamad Alizadeh Noughani

Abstract Climate change and global warming impact the frequency of droughts and supply systems. Therefore, it is necessary to conduct appropriate studies to evaluate the impact of climate change on weather patterns and drought. For this purpose, data from 6 synoptic stations located in the wet and temperate areas in the Zagros region in western Iran were used to construct four general atmospheric models including BCC-CSM1, CANESM2, HADGEM2-ES, NORESM1-M under representative concentration pathways (RCPs) 2.6, 4.5, and 8.5, for three future periods (2010-2039), (2040-2069) and (2070-2099). Then, spatio-temporal variations of drought severity and frequency were studied in the study area using SPI and SPEI indices in different periods up to 2100. The results showed the spatial extent of areas classified as extremely dry will increase by 47.9% in the first period compared to the base period. In the second and third periods, however, the severely dry class covers more area. Analysis of SPEI showed that drought will be more severe in all future periods. According to SPEI, drought frequency will increase by 2% according to the first period (2010-2039) relative to the base period (1984-2013), and by 0.3% in the second and third periods by 2099. The results of this study indicate that the severity, frequency, and impacts of drought will increase in the study area until the end of the century. Therefore, appropriate measures should be taken to control and reduce its potential effects in the future.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 157
Author(s):  
Qian Xiong ◽  
Zhongyi Sun ◽  
Wei Cui ◽  
Jizhou Lei ◽  
Xiuxian Fu ◽  
...  

Droughts that occur in tropical forests (TF) are expected to significantly impact the gross primary production (GPP) and the capacity of carbon sinks. Therefore, it is crucial to evaluate and analyze the sensitivities of TF-GPP to the characteristics of drought events for understanding global climate change. In this study, the standardized precipitation index (SPI) was used to define the drought intensity. Then, the spatially explicit individual-based dynamic global vegetation model (SEIB-DGVM) was utilized to simulate the dynamic process of GPP corresponding to multi-gradient drought scenarios—rain and dry seasons × 12 level durations × 4 level intensities. The results showed that drought events in the dry season have a significantly greater impact on TF-GPP than drought events in the rainy season, especially short-duration drought events. Furthermore, the impact of drought events in the rainy season is mainly manifested in long-duration droughts. Due to abundant rainfall in the rainy season, only extreme drought events caused a significant reduction in GPP, while the lack of water in the dry season caused significant impacts due to light drought. Effective precipitation and soil moisture stock in the rainy season are the most important support for the tropical forest dry season to resist extreme drought events in the study area. Further water deficit may render the tropical forest ecosystem more sensitive to drought events.


2020 ◽  
Author(s):  
Richard Kobina Dadzie Ephraim ◽  
Christopher Amey Asamoah ◽  
ALBERT ABAKA-YAWSON ◽  
Precious Kwablah Kwadzokpui ◽  
Samuel Adusei

Abstract Background: Climate change is a significant threat to the health of the Ghanaian people. Evidence abounds in Ghana that temperatures in all the ecological zones are rising, whereas rainfall levels have been generally reducing and patterns are increasingly becoming erratic. The study estimated the impact of climate variation between seasons on biochemical markers of renal disease.Methods: This study conveniently recruited 50 apparently healthy peasant farmers and hawkers at Wa in the Upper West Region of Ghana. A pre-study screening for hepatitis A and C, Diabetes mellitus, hypertension was done. Serum creatinine and urea levels were analyzed to rule out kidney preexisting renal disease . Baseline data was collected by estimating urea, creatinine, sodium, potassium, eGFR (estimated glomerular filtration rate) as well as for hemoglobin (Hb) and hematocrit (Hct) concentrations. Anthropometric data such as height, weight and blood pressure were measured by trained personnel. The study participants were closely followed and alerted deep in the dry season for the second sampling (urea, creatinine, hemoglobin, hematocrit, blood pressure, anthropometry)Results: This study recruited more males (58.82%) than females (41.15%), majority (52.92%) of which were aged 25-29 years with the youngest being 22 years and the eldest being 35 years. The study found body mass index (p<0.001), systolic blood pressure (p=0.019), creatinine (p<0.001), urea (p=0.013) and eGFR (p<0.001) to be significantly influenced by climate change. Stage 1 hypertension was predominant among the study participants during the dry season, 8 (15.69%) than was observed during the rainy season, 4 (7.84%) nonetheless the number of participants with normal BMI rose from 49.02% in the rainy season to 62.75% during the dry reason. Additionally, the study observed that the impact of climate change on systolic blood pressure and urea varied based on age and sex. Conclusion: This study revealed that climatic changes cause variations in various biochemical parameters used to assess renal function. Public health education on climatic changes and its implication including precautionary measures should be done among inhabitants of Wa and its environs to reduce its effect. Additionally, appropriate dietary patterns should also be advised to avoid the development of non-communicable diseases such as hypertension and obesity that are known principal causes of Chronic Kidney Disease (CKD).


2020 ◽  
Author(s):  
Richard Kobina Dadzie Ephraim ◽  
Christopher Amey Asamoah ◽  
Albert Abaka-Yawson ◽  
Precious Kwablah Kwadzokpui ◽  
Samuel Adusei

Abstract Background: Climate change is a significant threat to the health of the Ghanaian people. Evidence abounds in Ghana that temperatures in all the ecological zones are rising, whereas rainfall levels have been generally reducing and patterns are increasingly becoming erratic. The study estimated the impact of climate variation between seasons on biochemical markers of renal disease.Methods: This study conveniently recruited 50 apparently healthy peasant farmers and hawkers at Wa in the Upper West Region of Ghana. A pre-study screening for hepatitis A and C, Diabetes mellitus, hypertension was done. Serum creatinine and urea levels were analyzed to rule out kidney preexisting renal disease . Baseline data was collected by estimating urea, creatinine, sodium, potassium, eGFR (estimated glomerular filtration rate) as well as for hemoglobin (Hb) and hematocrit (Hct) concentrations. Anthropometric data such as height, weight and blood pressure were measured by trained personnel. The study participants were closely followed and alerted deep in the dry season for the second sampling (urea, creatinine, hemoglobin, hematocrit, blood pressure, anthropometry)Results: This study recruited more males (58.82%) than females (41.15%), majority (52.92%) of which were aged 25-29 years with the youngest being 22 years and the eldest being 35 years. The study found body mass index (p<0.001), systolic blood pressure (p=0.019), creatinine (p<0.001), urea (p=0.013) and eGFR (p<0.001) to be significantly influenced by climate change. Stage 1 hypertension was predominant among the study participants during the dry season, 8 (15.69%) than was observed during the rainy season, 4 (7.84%) nonetheless the number of participants with normal BMI rose from 49.02% in the rainy season to 62.75% during the dry reason. Additionally, the study observed that the impact of climate change on systolic blood pressure and urea varied based on age and sex. Conclusion: This study revealed that climatic changes cause variations in various biochemical parameters used to assess renal function. Public health education on climatic changes and its implication including precautionary measures should be done among inhabitants of Wa and its environs to reduce its effect. Additionally, appropriate dietary patterns should also be advised to avoid the development of non-communicable diseases such as hypertension and obesity that are known principal causes of Chronic Kidney Disease (CKD).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Zhang ◽  
Lu-yu Liu ◽  
Yi Liu ◽  
Man Zhang ◽  
Cheng-bang An

AbstractWithin the mountain altitudinal vegetation belts, the shift of forest tree lines and subalpine steppe belts to high altitudes constitutes an obvious response to global climate change. However, whether or not similar changes occur in steppe belts (low altitude) and nival belts in different areas within mountain systems remain undetermined. It is also unknown if these, responses to climate change are consistent. Here, using Landsat remote sensing images from 1989 to 2015, we obtained the spatial distribution of altitudinal vegetation belts in different periods of the Tianshan Mountains in Northwestern China. We suggest that the responses from different altitudinal vegetation belts to global climate change are different. The changes in the vegetation belts at low altitudes are spatially different. In high-altitude regions (higher than the forest belts), however, the trend of different altitudinal belts is consistent. Specifically, we focused on analyses of the impact of changes in temperature and precipitation on the nival belts, desert steppe belts, and montane steppe belts. The results demonstrated that the temperature in the study area exhibited an increasing trend, and is the main factor of altitudinal vegetation belts change in the Tianshan Mountains. In the context of a significant increase in temperature, the upper limit of the montane steppe in the eastern and central parts will shift to lower altitudes, which may limit the development of local animal husbandry. The montane steppe in the west, however, exhibits the opposite trend, which may augment the carrying capacity of pastures and promote the development of local animal husbandry. The lower limit of the nival belt will further increase in all studied areas, which may lead to an increase in surface runoff in the central and western regions.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyun Liu ◽  
Lian Xie ◽  
John M. Morrison ◽  
Daniel Kamykowski

The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM) configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW) in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC) and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.


2011 ◽  
Vol 243-249 ◽  
pp. 6827-6833 ◽  
Author(s):  
Gui Yuan Li ◽  
Zhong Yuan Duan ◽  
Yang Xu

In recent years, with the increase of population, the development of urbanization, and the improvement of people’s living standard, people have got an increasingly strong consciousness of environment landscape. While, the global climate change, water shortage and pollution problems which are resulted in the development of social economy.In this article, according to the different traits of waterfront landscape environment, we will analyze the problems of waterfront landscape environment construction, and discuss the design technique of waterfront landscape and the optimization method of landscape environment based on the visual angle of ecology restoration. This can prompt the development of waterfront landscape environment towards the harmony and intergrowth of nature ,ecology and human culture, and this has practical significance for the sustainable development of human and water.


Author(s):  
Viktoriia Sydorenko ◽  

This article is devoted to an overview of such a category of migrants as climate refugees. The author pays attention to the general characteristics of the impact of global climate change on migrants. Particular attention is paid to the disclosure of the term “climate refugee”, the reasons for the emergence of this category of people, as well as the problems of counting climate refugees. The author also provides examples for solving these problems.


Sign in / Sign up

Export Citation Format

Share Document